\(\frac{X+3_{ }}{X-2}\)

B, ...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 2 2018

a) Vì phân số có giá trị nguyên nên \(x+3⋮x-2\)

Ta có :

x + 3 = x - 2 +5

Vì \(x-2⋮x-2\)nên để \(x-2+5⋮x-2\)thì \(5⋮x-2\Rightarrow x-2\inƯ(5)=\left\{-1;-5;1;5\right\}\)

\(\Rightarrow x\in\left\{1;-3;3;7\right\}\)

Vậy \(x\in\left\{1;-3;3;7\right\}\)

b) Vì phân số trên có giá trị là nguyên nên \(10x⋮5x-3\)

Ta có :

\(\frac{10x}{5x-3}=\frac{5x+5x}{5x-3}=\frac{5x-3+5x-3+6}{5x-3}=\frac{2(5x-3)+6}{5x-3}\)

Vì \(5x-3⋮5x-3\)nên \(2(5x-3)⋮5x-3\)

Để \(2(5x-3)+6⋮5x-3\)thì \(6⋮5x-3\Rightarrow5x-3\inƯ(6)=\left\{2;-2;1;-1;3;-3;6;-6\right\}\)

\(\Rightarrow5x\in\left\{5;1;4;2;6;0;9;-3\right\}\)

\(\Rightarrow x\in\left\{1;0\right\}\)

Vậy \(x\in\left\{1;0\right\}\)

4 tháng 2 2018

\(\frac{x+3}{x-2}=\frac{x-2+5}{x-2}-1+\frac{5}{x-2}\)

\(\Leftrightarrow x-2\inƯ\left(5\right)\)

\(\Leftrightarrow x-2\in\left\{\pm1;\pm5\right\}\)

đến đây tự làm 

25 tháng 1 2018

a) Để \(\frac{-3}{x-1}\in Z\) \(\Leftrightarrow-3⋮\left(x-1\right)\)

   \(\Rightarrow x-1\inƯ\left(-3\right)=\left\{-1;1;-3;3\right\}\)

   \(\Rightarrow x=\left\{2;0;4;-2\right\}\)

b) Để \(\frac{-4}{2x-1}\in Z\Leftrightarrow-4⋮\left(2x-1\right)\)

\(\Rightarrow2x-1\inƯ\left(-4\right)=\left\{-1;1;-2;2;-4;4\right\}\)

\(\Rightarrow2x=\left\{0;2;-1;3;-3;5\right\}\)

\(\Rightarrow x=\left\{0;1;\frac{-1}{2};\frac{3}{2};\frac{-3}{2};\frac{5}{2}\right\}\)

Mà \(x\in Z\) \(\Rightarrow x=\left\{0;2\right\}\)

c) \(\frac{3x+7}{x-1}=\frac{3\left(x-1\right)+10}{x-1}\)

Vì \(3\left(x-1\right)⋮\left(x-1\right)\Rightarrow10⋮\left(x-1\right)\)

\(\Rightarrow x-1\inƯ\left(10\right)=\left\{1;-1;2;-2;5;-5;10;-10\right\}\)

\(\Rightarrow x=\left\{2;0;3;-1;6;-4;11;-9\right\}\)

d) Tương tự

Bài 1:Tính tổng các số sau:a/ \(\frac{1}{1x2}+\frac{1}{2x3}+\frac{1}{3x4}+...+\frac{1}{2003x2004}\)b/20x15-20x13+20c/\(\frac{1}{1x3}+\frac{1}{3x5}+\frac{1}{5x7}+...+\frac{1}{2003x2005}\)Bài 2:Cho A=\(\frac{n-1}{n+4}\)a/Hãy tìm n nguyên để A là một phân số.b/Hãy tìm n nguyên để A là một số nguyên.Bài 3:A/Số nguyên a phải có điều kiện gì để ta có phân số:a/\(\frac{32}{a-1}\)b/\(\frac{a}{5a+30}\)B/Số nguyên a phải có điều kiện gì...
Đọc tiếp

Bài 1:Tính tổng các số sau:

a/ \(\frac{1}{1x2}+\frac{1}{2x3}+\frac{1}{3x4}+...+\frac{1}{2003x2004}\)

b/20x15-20x13+20

c/\(\frac{1}{1x3}+\frac{1}{3x5}+\frac{1}{5x7}+...+\frac{1}{2003x2005}\)

Bài 2:Cho A=\(\frac{n-1}{n+4}\)

a/Hãy tìm n nguyên để A là một phân số.

b/Hãy tìm n nguyên để A là một số nguyên.

Bài 3:

A/Số nguyên a phải có điều kiện gì để ta có phân số:

a/\(\frac{32}{a-1}\)

b/\(\frac{a}{5a+30}\)

B/Số nguyên a phải có điều kiện gì để các phân số sau là số nguyên:

a/\(\frac{a+1}{3}\)

b/\(\frac{a-2}{5}\)

c/\(\frac{a-2}{a-4}\)

C/Tìm số nguyên x để các phân số sau là số nguyên:

a/\(\frac{13}{x-1}\)

b/\(\frac{x+3}{x-2}\)

Bài 4:Cho \(\frac{a}{b}=\frac{c}{d}\)

Hãy chứng minh  rằng \(\frac{2a-3c}{2b-3d}=\frac{2a+3c}{2a+3d}\)

Bài 5:Tính nhanh:

a/465+[58+(-465)+(-38)]

b/217+[43+(-217)+(-23)]

Bài 6:Cho A=\(\frac{10^{2004}+1}{10^{2005}+1}\)và B=\(\frac{10^{2005}+1}{10^{2006}+1}\)

So sánh A và B

Bài 7:Tính giá trị các biểu thức sau:

a/A=(-1)x(-1)2x(-1)3x(-1)4x...x(-1)2011

b/B=70x\(\left(\frac{131313}{565656}+\frac{131313}{727272}+\frac{131313}{909090}\right)\)

 

0
25 tháng 4 2018

a,x(4;-2;2;0)

30 tháng 4 2018

a) \(\frac{-3}{x-1}\Rightarrow\frac{-3}{x-1}=-3\)để x nguyên

\(\frac{-3}{1}=3\Rightarrow\frac{-3}{1+1}=x=2\)

\(\Rightarrow x=2\)

b)\(\frac{-4}{2x-1}=-4\)để x nguyên

\(\frac{-4}{1}=-4\Rightarrow\frac{-4}{\left(1+1\right)\div2}=x=1\)

\(\Rightarrow x=1\)

c) \(\frac{3x+7}{x-1}=5\)để x nguyên 

\(\frac{25}{5}=5\Rightarrow\frac{\left(25-7\right)\div3}{5+1}=x=6\)

\(\Rightarrow x=6\)

 d) \(\frac{4x-1}{3-x}=7\)để x nguyên

\(\frac{7}{1}=7\Rightarrow\frac{\left(7+1\right)\div4}{3-1}=x=2\)

\(\Rightarrow x=2\)

2 tháng 12 2017

-4/8 nha các bạn

21 giờ trước (19:40)

Bài 6: Tìm các số nguyên 𝑥 , 𝑦 , 𝑧 x,y,z Bạn đã cho một hệ phương trình phức tạp, nhưng tôi sẽ cố gắng làm rõ và giải quyết từng bước. Các phương trình là: 48 4 8 84 = 𝑥 − 10 𝑥 − 10 48 8 4 ​ 84=x−10 −10 x ​ − 10 𝑥 = − 7 𝑦 −10x=−7y 𝑦 − 7 = 𝑧 − 24 𝑧 − 24 y−7=z−24 −24 z ​ Chúng ta sẽ phân tích từng phương trình. Phương trình 1: 48 4 8 84 = 𝑥 − 10 𝑥 − 10 48 8 4 ​ 84=x−10 −10 x ​ Dường như có sự nhầm lẫn trong cách viết phương trình này, vì nó không rõ ràng. Tuy nhiên, tôi đoán bạn muốn nói 48 4 8 = 𝑥 − 10 × 𝑥 − 10 48 8 4 ​ =x−10× −10 x ​ . Để làm rõ, 48 4 8 48 8 4 ​ có thể viết là 48.5 48.5 (tức là 48 + 4 8 = 48.5 48+ 8 4 ​ =48.5). Phương trình trên có thể viết lại như sau: 48.5 = 𝑥 + 𝑥 48.5=x+x 48.5 = 2 𝑥 48.5=2x 𝑥 = 48.5 2 = 24.25 x= 2 48.5 ​ =24.25 Tuy nhiên, 𝑥 = 24.25 x=24.25 không phải là một số nguyên, nên có thể có sự nhầm lẫn trong cách viết phương trình. Phương trình 2: − 10 𝑥 = − 7 𝑦 −10x=−7y Ta có − 10 𝑥 = − 7 𝑦 −10x=−7y, hay là 10 𝑥 = 7 𝑦 10x=7y. Phương trình này cho thấy rằng 𝑥 x và 𝑦 y phải có một tỷ lệ đặc biệt sao cho khi nhân 𝑥 x với 10, kết quả phải là nhân 𝑦 y với 7. Do 𝑥 x và 𝑦 y là các số nguyên, ta có thể tìm các giá trị của 𝑥 x và 𝑦 y thỏa mãn điều kiện này. Phương trình 3: 𝑦 − 7 = 𝑧 − 24 𝑧 − 24 y−7=z−24 −24 z ​ Giống như phương trình đầu tiên, biểu thức này không hoàn toàn rõ ràng. Tuy nhiên, nếu giả sử bạn muốn viết 𝑦 − 7 = 𝑧 + 𝑧 24 y−7=z+ 24 z ​ , ta có thể tiếp tục phân tích. Bài 7: Biểu thức 𝐴 = 3 𝑛 − 2 𝑛 − 2 A= n−2 3n−2 ​ a) Tìm các số nguyên 𝑛 n để 𝐴 A là phân số: Biểu thức 𝐴 = 3 𝑛 − 2 𝑛 − 2 A= n−2 3n−2 ​ là một phân số nếu mẫu số khác 0. Do đó, 𝑛 − 2 ≠ 0 n−2  =0, tức là 𝑛 ≠ 2 n  =2. Vậy, 𝐴 A sẽ là phân số với tất cả các số nguyên 𝑛 n ngoại trừ 𝑛 = 2 n=2. b) Tìm các số nguyên 𝑛 n để 𝐴 A là số nguyên: Để 𝐴 = 3 𝑛 − 2 𝑛 − 2 A= n−2 3n−2 ​ là một số nguyên, mẫu số phải chia hết cho tử số. Ta xét phép chia 3 𝑛 − 2 𝑛 − 2 n−2 3n−2 ​ . Ta thực hiện phép chia polynom: 3 𝑛 − 2 𝑛 − 2 = 3 + 4 𝑛 − 2 n−2 3n−2 ​ =3+ n−2 4 ​ Để 𝐴 A là một số nguyên, phần dư 4 𝑛 − 2 n−2 4 ​ phải là một số nguyên, nghĩa là 𝑛 − 2 n−2 phải là một ước của 4. Các ước của 4 là: ± 1 , ± 2 , ± 4 ±1,±2,±4. Do đó, 𝑛 − 2 n−2 có thể là 1 , − 1 , 2 , − 2 , 4 , − 4 1,−1,2,−2,4,−4. Từ đó, ta có: 𝑛 − 2 = 1 ⇒ 𝑛 = 3 n−2=1⇒n=3 𝑛 − 2 = − 1 ⇒ 𝑛 = 1 n−2=−1⇒n=1 𝑛 − 2 = 2 ⇒ 𝑛 = 4 n−2=2⇒n=4 𝑛 − 2 = − 2 ⇒ 𝑛 = 0 n−2=−2⇒n=0 𝑛 − 2 = 4 ⇒ 𝑛 = 6 n−2=4⇒n=6 𝑛 − 2 = − 4 ⇒ 𝑛 = − 2 n−2=−4⇒n=−2 Vậy các giá trị của 𝑛 n để 𝐴 A là một số nguyên là: 𝑛 = − 2 , 0 , 1 , 3 , 4 , 6 n=−2,0,1,3,4,6. Hy vọng tôi đã giúp bạn hiểu rõ hơn về các bài toán này! Nếu cần giải thích thêm hoặc có thêm câu hỏi, bạn có thể hỏi tiếp.