Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left(x+2\right)^2-13\)
Có \(\left(x+2\right)^2\ge0\)
\(\Rightarrow A\ge0+-13=-13\)
Vậy MInA = -13 <=> x = -2
A = \(\dfrac{2x-1}{x+2}\)
a, A là phân số ⇔ \(x\) + 2 # 0 ⇒ \(x\) # -2
b, Để A là một số nguyên thì 2\(x-1\) ⋮ \(x\) + 2
⇒ 2\(x\) + 4 - 5 ⋮ \(x\) + 2
⇒ 2(\(x\) + 2) - 5 ⋮ \(x\) + 2
⇒ 5 ⋮ \(x\) + 2
⇒ \(x\) + 2 \(\in\) { -5; -1; 1; 5}
⇒ \(x\) \(\in\) { -7; -3; -1; 3}
c, A = \(\dfrac{2x-1}{x+2}\)
A = 2 - \(\dfrac{5}{x+2}\)
Với \(x\) \(\in\) Z và \(x\) < -3 ta có
\(x\) + 2 < - 3 + 2 = -1
⇒ \(\dfrac{5}{x+2}\) > \(\dfrac{5}{-1}\) = -5 ⇒ - \(\dfrac{5}{x+2}\)< 5
⇒ 2 - \(\dfrac{5}{x+2}\) < 2 + 5 = 7 ⇒ A < 7 (1)
Với \(x\) > -3; \(x\) # - 2; \(x\in\) Z ⇒ \(x\) ≥ -1 ⇒ \(x\) + 2 ≥ -1 + 2 = 1
\(\dfrac{5}{x+2}\) > 0 ⇒ - \(\dfrac{5}{x+2}\) < 0 ⇒ 2 - \(\dfrac{5}{x+2}\) < 2 (2)
Với \(x=-3\) ⇒ A = 2 - \(\dfrac{5}{-3+2}\) = 7 (3)
Kết hợp (1); (2) và(3) ta có A(max) = 7 ⇔ \(x\) = -3
Ta có \(\left(x-1\right)^2\ge0\forall x\Rightarrow2\left(x-1\right)^2\ge0\Rightarrow2\left(x-1\right)^2+3\ge3\)
Dấu"=" xảy ra <=> (x - 1)2 = 0
=> x - 1 = 0
=> x = 1
Vậy GTNN của A là 3 khi x = 1
Ta có \(\left(x-1\right)^2\ge0\forall x\Rightarrow2\left(x-1\right)^2\ge0\forall x\)
=> \(2\left(x-1\right)^2+3\ge0+3=3\)hay A>=3
Dấu "=" xảy ra <=> \(2\left(x-1\right)^2=0\)
\(\Leftrightarrow\left(x-1\right)^2=0\)
<=> x-1=0
<=> x=1
Vậy MinA=3 đạt được khi x=1
a; A = \(\dfrac{1}{15}\) \(\times\) \(\dfrac{225}{x+2}\) + \(\dfrac{3}{14}\) \(\times\) \(\dfrac{196}{3x+6}\) (đk \(x\) ≠ - 2)
A = \(\dfrac{15}{x+2}\) + \(\dfrac{3\times14}{3\times\left(x+2\right)}\)
A = \(\dfrac{15}{x+2}\) + \(\dfrac{14}{x+2}\)
A = \(\dfrac{29}{x+2}\)
b; A = \(\dfrac{29}{x+2}\) (-2 ≠ \(x\) \(\in\) Z)
A \(\in\) Z ⇔ 29 ⋮ \(x\) + 2
\(x\) + 2 \(\in\) Ư(29) = {-29; - 1; 1; 29}
Lập bảng ta có:
\(x\) + 2 | - 29 | - 1 | 1 | 29 |
\(x\) | -31 | -3 | -1 | 27 |
Theo bảng trên ta có: \(x\) \(\in\) {- 31; -3; -1; 27}
Vậy \(x\) \(\in\) {-31; -3; -1; 27}
\(A=\left(x+2\right)^2-5\ge-5\)
Dấu ''='' xảy ra <=> x = -2
Vậy GTNN A là -5 <=> x = -2
\(A=\left(x+2\right)^2-5\)
Vì \(\left(x+2\right)^2\ge0\forall x\)\(\Rightarrow\left(x+2\right)^2-5\ge-5\forall x\)
\(\Rightarrow A\ge-5\)
Dấu " = " xảy ra \(\Leftrightarrow x+2=0\)\(\Leftrightarrow x=-2\)
Vậy \(minA=-5\)\(\Leftrightarrow x=-2\)
\(A=\frac{x-5}{x-3}=\frac{x-3-2}{x-3}=\frac{x-3}{x-3}-\frac{2}{x-3}=1-\frac{2}{x-3}\)
Để A đạt giá trị nhỏ nhất thì \(\frac{2}{x-3}\) đạt giá trị lớn nhất \(\Leftrightarrow x-3\)đạt giá trị nguyên dương nhỏ nhất \(\Leftrightarrow x-3=1\Leftrightarrow x=4\)
Vậy với x=4 thì A đạt giá trị nhỏ nhất.
A= \(\left(x+2\right)^2-13\)
Ta có \(\left(x+2\right)^2\ge0\forall x\)
\(\Rightarrow\left(x+2\right)^2-13\ge-13\forall x\)
\(\Rightarrow A\ge-13\forall x\)
Dấu "=" xảy ra <=> \(\left(x+2\right)^2=0\)
\(\Leftrightarrow x+2=0\)
\(\Leftrightarrow x=-2\)
Vậy Min A = -13 \(\Leftrightarrow x=-2\)
@@ Học tốt
Chiyuki Fujito
Tái bút : Đây là cách trình bày của lp 7