Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có:+) \(\frac{12}{16}=\frac{-x}{4}\) <=> 12.4 = 16.(-x)
<=> 48 = -16x
<=> x = 48 : (-16) = -3
+) \(\frac{12}{16}=\frac{21}{y}\) <=> 12y = 21.16
<=> 12y = 336
<=> y = 336 : 12 = 28
+) \(\frac{12}{16}=\frac{z}{-80}\) <=> 12. (-80) = 16z
<=> -960 = 16z
<=> z = -960 : 16 = -60
b) Ta có: \(\frac{x+3}{7+y}=\frac{3}{7}\) <=> (x + 3).7 = 3(7 + y)
<=> 7x + 21 = 21 + 3y
<=> 7x = 3y
<=> \(\frac{x}{3}=\frac{y}{7}\)
Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{3}=\frac{y}{7}=\frac{x+y}{3+7}=\frac{20}{10}=2\)
=> \(\hept{\begin{cases}\frac{x}{3}=2\\\frac{y}{7}=2\end{cases}}\) => \(\hept{\begin{cases}x=2.3=6\\y=2.7=14\end{cases}}\)
Vậy ...
\(a)x+30\%x=-1,31\)
\(\Leftrightarrow x+\frac{3x}{10}=-1,31\)
\(\Leftrightarrow10x+3x=-13,1\)
\(\Leftrightarrow13x=-13,1\Leftrightarrow x=-\frac{131}{130}\)
\(b)\left(x-\frac{1}{2}\right):\frac{1}{3}+\frac{5}{7}=9\frac{5}{7}\)
\(\Leftrightarrow\frac{2x-1}{2}.3+\frac{5}{7}=\frac{68}{7}\)
\(\Leftrightarrow\frac{6x-3}{2}=\frac{63}{7}\)
\(\Leftrightarrow\frac{6x-3}{2}=9\)
\(\Leftrightarrow6x-3=18\)
\(\Leftrightarrow x=\frac{7}{2}\)
a) Rút gọn phân số đi
\(\Rightarrow-4\le x< -3\)
\(\Rightarrow x\in\left\{-4;\right\}\)
b) Tương tự nhé
a, -36/9=-4
-15/5=-3
=> -4 bé hơn hặc bằng -3
=> A={-4}
b, -27/3=-9=-63/7
12/14=6/7
=> A={-62/7;-61/7;...;5/7;6/7}
a) \(\frac{-8}{3}+\frac{7}{5}+\frac{-71}{15}\)< \(x\) < \(\frac{-13}{7}+\frac{19}{14}+\frac{-7}{2}\)
Ta có: \(\frac{-8}{3}+\frac{7}{5}+\frac{-71}{15}\)
=\(\frac{-40}{15}+\frac{21}{15}+\frac{-71}{15}\)
=\(\frac{-90}{15}\)
=\(-6\)
Ta có: \(\frac{-13}{7}+\frac{19}{14}+\frac{-7}{2}\)
=\(\frac{-26}{14}+\frac{19}{14}+\frac{-49}{14}\)
=\(\frac{-56}{14}\)
=\(-4\)
=> \(-6\)< \(x\)<\(-4\)
=> \(x=-5\)
b)\(\frac{5}{17}+\frac{-4}{9}+\frac{-20}{31}+\frac{12}{17}+\frac{-11}{31}\)< \(\frac{x}{9}\)<\(\frac{-3}{7}+\frac{7}{15}+\frac{4}{-7}+\frac{8}{15}+\frac{2}{3}\)
Ta có: \(\frac{5}{17}+\frac{-4}{9}+\frac{-20}{31}+\frac{12}{17}+\frac{-11}{31}\)
=\(\left(\frac{5}{17}+\frac{12}{17}\right)+\left(\frac{-20}{31}+\frac{-11}{31}\right)+\frac{-4}{9}\)
=\(1+\left(-1\right)+\frac{-4}{9}\)
=\(0+\frac{-4}{9}\)
=\(\frac{-4}{9}\)
Ta có: \(\frac{-3}{7}+\frac{7}{15}+\frac{4}{-7}+\frac{8}{15}+\frac{2}{3}\)
=\(\frac{-3}{7}+\frac{7}{15}+\frac{-4}{7}+\frac{8}{15}+\frac{2}{3}\)
=\(\left(\frac{-3}{7}+\frac{-4}{7}\right)+\left(\frac{7}{15}+\frac{8}{15}\right)+\frac{2}{3}\)
=\(\left(-1\right)+1+\frac{2}{3}\)
=\(0+\frac{2}{3}\)
=\(\frac{2}{3}\)
=> \(\frac{-4}{9}\)< \(\frac{x}{9}\)<\(\frac{2}{3}\)
=
=> \(\frac{-4}{9}\)<\(\frac{x}{9}\)<\(\frac{6}{9}\)
=> \(-4\)< \(x\)<\(6\)
=>\(x\in\left\{-3;-2;-1;0;1;2;3;4;5\right\}\)
\(a)\frac{1}{3}+\frac{-2}{5}+\frac{1}{6}+\frac{-1}{5}\le x< \frac{-3}{4}+\frac{2}{7}+\frac{-1}{4}+\frac{3}{5}+\frac{5}{7}\)
\(\Rightarrow\frac{1}{3}+\frac{1}{6}+\frac{-2}{5}+\frac{-1}{5}\le x< \frac{-3}{4}+\frac{-1}{4}+\frac{2}{7}+\frac{5}{7}+\frac{3}{5}\)
\(\Rightarrow\frac{2}{6}+\frac{1}{6}+\frac{-3}{5}\le x< -1+1+\frac{3}{5}\)
\(\Rightarrow\frac{1}{2}+\frac{-3}{5}\le x< \frac{3}{5}\)
\(\Rightarrow\frac{-1}{10}\le x< \frac{6}{10}\)
\(\Rightarrow-1\le x< 6\)
\(\Rightarrow x\in\left\{-1;0;1;2;3;4;5\right\}\)
Bài b tương tự
\(a/\frac{7}{9}-\frac{x}{3}=\frac{1}{9}\)
\(\Rightarrow\frac{x}{3}=\frac{7}{9}-\frac{1}{9}\)
\(\Rightarrow\frac{x}{3}=\frac{2}{3}\)
\(\Rightarrow x=2\)
Vậy \(x=2\)
\(b/\frac{1}{x}-\frac{-2}{15}=\frac{7}{15}\)
\(\Rightarrow\frac{1}{x}=\frac{7}{15}+\frac{-2}{15}\)
\(\Rightarrow\frac{1}{x}=\frac{1}{3}\)
\(\Rightarrow x=3\)
Vậy \(x=3\)
\(c/\frac{-11}{14}-\frac{-4}{x}=\frac{-3}{14}\)
\(\Rightarrow\frac{-4}{x}=\frac{-11}{14}-\frac{-3}{14}\)
\(\Rightarrow\frac{-4}{x}=\frac{-4}{7}\)
\(\Rightarrow x=7\)
Vậy \(x=7\)
\(d/\frac{x}{21}-\frac{2}{3}=\frac{5}{21}\)
\(\Rightarrow\frac{x}{21}=\frac{5}{21}+\frac{2}{3}\)
\(\Rightarrow\frac{x}{21}=\frac{19}{21}\)
\(\Rightarrow x=19\)
Vậy \(x=19\)
#Mạt Mạt#