Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{2^{4-x}}{16^5}=32^6\)
\(\Rightarrow\frac{2^{4-x}}{\left(2^4\right)^5}=\left(2^5\right)^6\)
\(\Rightarrow\frac{2^{4-x}}{2^{20}}=2^{30}\)
\(\Rightarrow2^{4-x}=2^{30}.2^{20}\)
\(\Rightarrow2^{4-x}=2^{50}\)
\(\Rightarrow4-x=50\)
\(\Rightarrow x=-46\)
Bài 1:
a)
\(\dfrac{4^2\cdot25^2+32\cdot125}{2^3\cdot5^2}\\ =\dfrac{\left(2^2\right)^2\cdot\left(5^2\right)^2+2^5\cdot5^3}{2^3\cdot5^2}\\ =\dfrac{2^{2\cdot2}\cdot5^{2\cdot2}+2^5\cdot5^3}{2^3\cdot5^2}\\ =\dfrac{2^4\cdot5^4+2^5\cdot5^3}{2^3\cdot5^2}\\ =\dfrac{2^4\cdot5^4}{2^3\cdot5^2}+\dfrac{2^5\cdot5^3}{2^3\cdot5^2}\\ =2\cdot5^2+2^2\cdot5\\ =2\cdot25+4\cdot5\\ =50+20\\ =70\)
c)
\(\dfrac{\left(1-\dfrac{4}{9}-2\right)\cdot16}{\left(2-3\right)^{-2}}+12\\ =\dfrac{\left(\dfrac{9}{9}-\dfrac{4}{9}-\dfrac{18}{9}\right)\cdot16}{\left(-1\right)^{-2}}+12\\ =\dfrac{\dfrac{-13}{9}\cdot16}{\dfrac{1}{\left(-1\right)^2}}+12\\ =\dfrac{\dfrac{-208}{9}}{1}+12\\ =\dfrac{-208}{9}+12\\ =\dfrac{-208}{9}+\dfrac{108}{9}\\ =\dfrac{100}{9}\)
Bài 2:
a)
\(\left(x+2\right)^2=36\\ \Rightarrow\left[{}\begin{matrix}x+2=6\\x+2=-6\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=4\\x=-8\end{matrix}\right.\)
b)
\(\left(1,78^{2x-2}-1,78^x\right):1,78^x=0\\ \Leftrightarrow\dfrac{1,78^{2x-2}}{1,78^x}-\dfrac{1,78^x}{1,78^x}=0\\ \Leftrightarrow\dfrac{1,78^{2x-2}}{1,78^x}-1=0\\ \Leftrightarrow \dfrac{1,78^{2x-2}}{1,78^x}=1\\ \Leftrightarrow1,78^{2x-2}=1,78^x\\ \Leftrightarrow2x-2=x\\ \Leftrightarrow2x-x=2\\ \Leftrightarrow x=2\)
d) \(5^{\left(x-2\right)\left(x+3\right)}=1\)
\(\Rightarrow5^{\left(x-2\right)\left(x+3\right)}=5^0\)
\(\Leftrightarrow\left(x-2\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x+3=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=2\\x=-3\end{matrix}\right.\)
Vậy \(x_1=-3;x_2=2\)
2) x4 -16 =0 => x4 =16 => x4 = 44 hoặc (-4)4 => x = 4 hoặc -4
16x = 8x . 32
=> ( 24 )x = ( 23 )x . 25
=> 24x = 23x . 25
=> 4x = 3x + 5
=> 4x - 3x = 5
=> x = 5
\(\left(2^4\right)^x=\left(2^3\right)^x.\left(2^5\right)\)
\(\Rightarrow2^{4x}=2^{3x}.2^5\)
\(2^{4x}=2^{3x+5}\)
=>4x=3x+5
=>x=5
a, \(3^{2x+2}=9^{10}\\ 3^{2x+2}=\left(3^2\right)^{10}\\ 3^{2x+2}=3^{20}\\ \Rightarrow2x+2=20\\ \Rightarrow2x=18\\ \Rightarrow x=9\)Vậy x = 9
b, \(3^{3x}=27^{13}\\ 3^{3x}=\left(3^3\right)^{13}\\ 3^{3x}=3^{39}\\ \Rightarrow3x=39\\ \Rightarrow x=13\)Vậy x = 13
c, \(2^x=4^6\cdot16^3\\ 2^x=\left(2^2\right)^6\cdot\left(2^4\right)^3\\ 2^x=2^{12}\cdot2^{12}\\ 2^x=2^{24}\\ \Rightarrow x=24\)Vậy x = 24
d, \(2^x=32^5\cdot64^6\\ 2^x=\left(2^5\right)^5\cdot\left(2^6\right)^6\\ 2^x=2^{25}\cdot2^{36}\\ 2^x=2^{61}\\ \Rightarrow x=61\)Vậy x = 61
\(a,4^x=8^4\)
\(\Rightarrow2^{2x}=2^{12}\)
\(\Rightarrow2x=12\)
\(\Rightarrow x=12:2\)
\(\Rightarrow x=6\)