K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Ta có: \(\left(x^2-2\right)\left(x^2-4\right)< 0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2-2>0\\x^2-4< 0\end{matrix}\right.\Leftrightarrow2< x^2< 4\)

mà x là số nguyên

nên \(x\in\varnothing\)

b: \(\left(x^2-2\right)\left(x^2+5\right)\left(x^2-18\right)< 0\)

\(\Leftrightarrow\left(x^2-2\right)\left(x^2-18\right)< 0\)

\(\Leftrightarrow2< x^2< 18\)

mà x là số nguyên

nên \(x\in\left\{2;-2;3;-3;4;-4\right\}\)

20 tháng 5 2022

a: Ta có:

 (x2−2)(x2−4)<0

⇔{x2−2>0x2−4<0⇔2<x2<4

mà x là số nguyên

nên x

b: (x2−2)(x2+5)(x2−18)<0

⇔(x2−2)(x2−18)<0

⇔2<x2<18

 

5 tháng 6 2019

1.b) \(\left(\left|x\right|-3\right)\left(x^2+4\right)< 0\)

\(\Rightarrow\hept{\begin{cases}\left|x\right|-3\\x^2+4\end{cases}}\) trái dấu

\(TH1:\hept{\begin{cases}\left|x\right|-3< 0\\x^2+4>0\end{cases}}\Leftrightarrow\hept{\begin{cases}\left|x\right|< 3\\x^2>-4\end{cases}}\Leftrightarrow x\in\left\{0;\pm1;\pm2\right\}\)

\(TH1:\hept{\begin{cases}\left|x\right|-3>0\\x^2+4< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}\left|x\right|>3\\x^2< -4\end{cases}}\Leftrightarrow x\in\left\{\varnothing\right\}\)

Vậy \(x\in\left\{0;\pm1;\pm2\right\}\)

5 tháng 6 2019

Bài 1b) có thể giải gọn hơn nhuư thế này

23 tháng 12 2019

\(b.\) \(\left(x-1\right).\left(x-2\right)>0\)

\(\Leftrightarrow x-1\) và \(x-2\) cùng dấu

\(\Leftrightarrow\hept{\begin{cases}x-1>0\\x-2>0\end{cases}}\)     Hoặc: \(\Leftrightarrow\hept{\begin{cases}x-1< 0\\x-2< 0\end{cases}}\)

T/hợp 1:   \(\hept{\begin{cases}x-1>0\\x-2>0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x>1\\x>2\end{cases}}\)

T/hợp 2: \(\hept{\begin{cases}x-1< 0\\x-2< 0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x< 1\\x< 2\end{cases}}\)

Vậy: ..................................

23 tháng 12 2019

\(e.\)\(\frac{5}{x}< 1\)

\(\Leftrightarrow x>5\)

Vậy: .............................

28 tháng 8 2017

mấy cái này đơn dãng vô cùng nhưng có đều bn ra đề dài quá nha

a) \(3x+4\ge7\Leftrightarrow3x\ge7-4\Leftrightarrow3x\ge3\Leftrightarrow x\ge1\) vậy \(x\ge1\)

b) \(-5x+1< 11\Leftrightarrow-5x< 11-1\Leftrightarrow-5x< 10\Leftrightarrow x>\dfrac{10}{-5}\)

\(\Leftrightarrow x>-2\) vậy \(x>-2\)

c) \(\dfrac{5}{x-3}< 0\Leftrightarrow x-3< 0\Leftrightarrow x< 3\) vậy \(x< 3\)

d) \(\dfrac{-7}{2-x}\ge0\Leftrightarrow2-x\le0\Leftrightarrow x\ge2\) vậy \(x\ge2\)

e) \(x^2+4x>0\Leftrightarrow x\left(x+4\right)>0\) \(\left\{{}\begin{matrix}\left[{}\begin{matrix}x>0\\x+4>0\end{matrix}\right.\\\left[{}\begin{matrix}x< 0\\x+4< 0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x>0\\x>-4\end{matrix}\right.\\\left[{}\begin{matrix}x< 0\\x< -4\end{matrix}\right.\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x>0\\x< -4\end{matrix}\right.\) vậy \(x>0\) hoặc \(x< -4\)

f) \(\dfrac{x-2}{x-6}< 0\) \(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x-2>0\\x-6>0\end{matrix}\right.\\\left[{}\begin{matrix}x-2< 0\\x-6< 0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x>2\\x>6\end{matrix}\right.\\\left[{}\begin{matrix}x< 2\\x< 6\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x>6\\x< 2\end{matrix}\right.\)

vậy \(x>6\) hoặc \(x< 2\)

g) \(\left(x-1\right)\left(x+2\right)\left(3-x\right)< 0\Leftrightarrow-\left[\left(x-1\right)\left(x+2\right)\left(x-3\right)\right]< 0\)

\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left(x-3\right)>0\)

th1: 3 số hạng đều dương : \(\Leftrightarrow\left[{}\begin{matrix}x-1>0\\x+2>0\\x-3>0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x>1\\x>-2\\x>3\end{matrix}\right.\) \(\Rightarrow x>3\)

th2: 2 âm 1 dương : (vì trong 3 số hạng ta có : \(\left(x+2\right)\) lớn nhất \(\Rightarrow\left(x+2\right)\) dương)

\(\Leftrightarrow\left[{}\begin{matrix}x-1< 0\\x+2>0\\x-3< 0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x< 1\\x>-2\\x< 3\end{matrix}\right.\) \(\Rightarrow-2< x< 1\)

vậy \(x>3\) hoặc \(-2< x< 1\)

h) \(\dfrac{x^2-1}{x}>0\) \(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x^2-1>0\\x>0\end{matrix}\right.\\\left[{}\begin{matrix}x^2-1< 0\\x< 0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x^2>1\\x>0\end{matrix}\right.\\\left[{}\begin{matrix}x^2< 1\\x< 0\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}\left\{{}\begin{matrix}x>1\\x< -1\end{matrix}\right.\\x>0\end{matrix}\right.\\\left[{}\begin{matrix}-1< x< 1\\x< 0\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x>1\\-1< x< 0\end{matrix}\right.\) vậy \(x>1\) hoặc \(-1< x< 0\)

i) \(x^2+x-2< 0\Leftrightarrow x^2+x+\dfrac{1}{4}-\dfrac{9}{4}< 0\Leftrightarrow\left(x+\dfrac{1}{2}\right)^2-\dfrac{9}{4}< 0\)

\(\Leftrightarrow\left(x+\dfrac{1}{2}\right)^2< \dfrac{9}{4}\Leftrightarrow\dfrac{-3}{2}< \left(x+\dfrac{1}{2}\right)< \dfrac{3}{2}\Leftrightarrow-2< x< 1\)

vậy \(-2< x< 1\)

27 tháng 8 2017

Mysterious Person, Đoàn Đức Hiếu, Nguyễn Đình Dũng , ... giúp mình!

18 tháng 9 2019

a) x/5 >2

    x/5>10/5

=>x>10

=> x \(\in\){ 11;12;13;14;15;16;.....}

c) x/-4<2

x/-4<-8/-4

=>x<-8

=> x\(\in\){-9;-10;-11;-12;-13;-14;-15;-16;-17;-18;....}

m ko biết làm câu b

a) 

x/5 >2 

(=) x/5 -2 >0

(=) (x-10)/5 >0 

(=) x-10>0

(=) x>10

b)

-5<0 

=> -5/x <0 

(=) x>0

c)

x/-4 <2

(=) -x/4 - 2<0

(=) (-x-8)/4 <0

(=) -x-8<0

(=) -x<8

(=) x>-8

\(\left(x^2+5\right)\left(x-3\right)>0\)

Th1 : \(\hept{\begin{cases}x^2+5>0\\x-3< 0\end{cases}\Rightarrow\hept{\begin{cases}x^2>-5\\x< 3\end{cases}}}\)

Th2 : \(\hept{\begin{cases}x^2+5< 0\\x-3>0\end{cases}\Rightarrow\hept{\begin{cases}x^2< -5\\x>3\end{cases}}}\)

12 tháng 12 2017

a) \(\left(x^2+5\right)\left(x-3\right)>0\Leftrightarrow x-3>0\) (do \(x^2+5>0,\forall x\in R\)).
\(\Leftrightarrow x>3\).
b) \(\left(-x^2-17\right).\left(x+1\right)>0\Leftrightarrow-\left(x^2+17\right).\left(x+1\right)>0\)\(\Leftrightarrow-\left(x+1\right)>0\) ( do \(x^2+17>0\) ).
\(\Leftrightarrow x+1< 0\Leftrightarrow x< -1\).
c) \(-2\left(7-x\right)< 0\Leftrightarrow2x-14< 0\)\(\Leftrightarrow2x< 14\)\(\Leftrightarrow x< 7\).
d) \(\left(x-2\right).\left(x+2\right)< 0\Leftrightarrow x^2+2x-2x-4< 0\)\(\Leftrightarrow x^2-4< 0\) \(\Leftrightarrow x^2< 4\)\(\Leftrightarrow\left|x\right|< 2\)\(\Leftrightarrow-2< x< 2\).