K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
29 tháng 1 2024

Lời giải:

$(x+1)+(x+2)+(x+3)+...+(x+100)=(1-x)+(2-x)+(3-x)+...+(100-x)$
$\underbrace{(x+x+...+x)}_{100}+(1+2+3+...+100)=(1+2+3+...+100)-\underbrace{(x+x+...+x)}_{100}$

$\Rightarrow 100x=-100x$

$\Rightarrow 200x=0$

$\Rightarrow x=0$

............................. Đấng Ed bảo ko chắc cho lắm nên sai thì sr nhé -,- 

\(a)\)\(\left|x-1\right|+\left|x-2\right|+...+\left|x-8\right|=22\)

+) Với \(x\ge8\) ta có : 

\(x-1+x-2+...+x-8=22\)

\(\Leftrightarrow\)\(8x-36=22\)

\(\Leftrightarrow\)\(x=\frac{29}{4}\)( không thỏa mãn ) 

+) Với \(x< 1\) ta có : 

\(1-x+2-x+...+8-x=22\)

\(\Leftrightarrow\)\(36-8x=22\)

\(\Leftrightarrow\)\(x=\frac{7}{4}\) ( không thỏa mãn ) 

Vậy không có x thỏa mãn đề bài 

\(b)\)\(\left|x-1\right|+\left|x-2\right|+\left|x-3\right|+...+\left|x-100\right|=2500\)

+) Với \(x\ge100\) ta có : 

\(x-1+x-2+x-3+...+x-100=2500\)

\(\Leftrightarrow\)\(100x-5050=2500\)

\(\Leftrightarrow\)\(x=\frac{151}{2}\) ( không thỏa mãn ) 

+) Với \(x< 1\) ta có : 

\(1-x+2-x+3-x+...+100-x=2500\)

\(\Leftrightarrow\)\(5050-100x=2500\)

\(\Leftrightarrow\)\(x=\frac{51}{2}\) ( không thỏa mãn ) 

Vậy không có x thỏa mãn đề bài 

Bài 2 : 

+) Với \(x\ge-1\) ta có : 

\(x+1+x+2+...+x+100=605x\)

\(\Leftrightarrow\)\(100x+5050=605x\)

\(\Leftrightarrow\)\(x=10\) ( thỏa mãn ) 

+) Với \(x< -100\) ta có : 

\(-x-1-x-2-...-x-100=605x\)

\(\Leftrightarrow\)\(-100x-5050=605x\)

\(\Leftrightarrow\)\(x=\frac{-1010}{141}\) ( không thỏa mãn ) 

Vậy \(x=10\)

~ Đấng phắn ~ 

24 tháng 2 2020

Ta có:

\(|x+1|=x+1\)

\(|x+2|=x+2\)

\(|x+3|=x+3\)

....................

\(|x+100|=x+100\)

\(\Rightarrow|x+1|+|x+2|+|x+3|+.....+|x+100|=x+1+x+2+x+3+....+x+100=2500\)

\(\Leftrightarrow\left(x+x+x+....+x\right)+\left(1+2+3+...+100\right)=2500\)

\(\Leftrightarrow100x+5050=2500\)

\(\Leftrightarrow100x=-2550\)

\(\Leftrightarrow x=-25,5\)

b) Làm tương tự câu a)

4 tháng 2 2023

x+1∣=x+1 ????

15 tháng 6 2016

\(\frac{100}{3}+\frac{100}{3^2}+\frac{100}{3^2}+\frac{100}{3^4}\)

Có phải z ko hả bạn

15 tháng 6 2016

Mk ko hiểu câu đầu của bạn là j nhưng theo ý kiến của bạn trên thì mk giải thế này nhé: 

Đặt P = \(\frac{100}{3}+\frac{100}{3^2}+\frac{100}{3^3}+\frac{100}{3^4}\)

=> \(\frac{1}{3}\)P = 3 . ( \(\frac{100}{3}+\frac{100}{3^2}+\frac{100}{3^3}+\frac{100}{3^4}\))

=> \(\frac{1}{3}\)P = \(\frac{100}{3^2}+\frac{100}{3^3}+\frac{100}{3^4}+\frac{100}{3^5}\)

=> \(\frac{1}{3}P-P=-\frac{2}{3}P\) =\(\frac{100}{3^2}+\frac{100}{3^3}+\frac{100}{3^4}+\frac{100}{3^5}\)--- \(\frac{100}{3}+\frac{100}{3^2}+\frac{100}{3^3}+\frac{100}{3^4}\)

=> -\(-\frac{2}{3}P=\frac{100}{3^5}-\frac{100}{3}\)

==> P = \(-\frac{2}{3}.\left(\frac{100}{3^5}-\frac{100}{3}\right)\)

22 tháng 10 2015

MỌI NGƯỜI ƠI ! CÓ AI CÒN RẢNH RANG GIÚP BÀI TỚ VỚI NHÉ ! HUHU MAI TỚ PHẢI NỘP BÀI RỒI