Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có (x + 1)(y + 2)(z + 3) = 4xyz
<=> \(\frac{\left(x+1\right)\left(y+2\right)\left(z+3\right)}{xyz}=4\)
<=> \(\frac{x+1}{x}.\frac{y+2}{y}.\frac{z+3}{z}=4\)
<=> \(\left(1+\frac{1}{x}\right)\left(1+\frac{2}{y}\right)\left(1+\frac{3}{z}\right)=4\)
=> \(\hept{\begin{cases}1⋮x\\2⋮y\\3⋮z\end{cases}}\); mà x;y;z \(\in P\)=> Không tìm được x;y;z thỏa mãn
Ta có:7(x+y+z) chia hết cho 7 nên \(xyz⋮7\)
Mà 7 là số nguyên tố nên trong ba số x,y,z luôn có một số chia hết cho 7
Không mất tính tổng quát ta giả sử x chia hết cho 7 mà x là số nguyên tố nên x=7
Thay vào ta được:\(7\left(7+y+z\right)=7yz\)
\(\Rightarrow7+y+z=yz\Rightarrow yz-y-z+1=8\Rightarrow\left(y-1\right)\left(z-1\right)=8=1.8=2.4=\left(-1\right).\left(-8\right)\)
\(=\left(-2\right).\left(-4\right)\)
Bạn tự lập bảng xét nha,cuối cùng nếu có x,y,z thỏa mãn thì phải vậy x,y,z là hoán vị nha....
a,Ta có: x+y= -7/6 và y+z= 1/4
=>x+y+y+z= -7/6 +1/4
=>x+z+2y= -11/12
=>1/2+2y= -11/12
=>2y= -11/12 -1/2
=>2y= -17/12
=>y= -17/24
Mà x+y=-7/6 =>x= -7/6+17/24= -11/24
x+z=1/2 =>z=1/2+11/24=23/24
Ta có: \(x+y=-\frac{7}{6};y+z=\frac{1}{4};x+z=\frac{1}{2}\)
\(\Rightarrow\left(x+y\right)+\left(y+z\right)+\left(x+z\right)=-\frac{7}{6}+\frac{1}{4}+\frac{1}{2}\)
\(\Rightarrow2x+2y+2z=-\frac{28}{24}+\frac{6}{24}+\frac{12}{24}\)
\(\Rightarrow2\left(x+y+z\right)=-\frac{5}{12}\)
\(\Rightarrow x+y+z=-\frac{5}{12}:2\)
\(\Rightarrow x+y+z=-\frac{5}{24}\)
\(\Rightarrow\left(x+y+z\right)-\left(x+y\right)=-\frac{5}{24}+\frac{7}{6}\Rightarrow z=-\frac{5}{24}+\frac{28}{24}=\frac{23}{24}\)
\(\Rightarrow\left(x+y+z\right)-\left(y+z\right)=-\frac{5}{24}-\frac{1}{4}\Rightarrow x=-\frac{5}{24}-\frac{6}{24}=-\frac{11}{24}\)
\(\Rightarrow\left(x+y+z\right)-\left(x+z\right)=-\frac{5}{24}-\frac{1}{2}\Rightarrow y=-\frac{5}{24}-\frac{12}{24}=-\frac{17}{24}\)
Vậy \(x=\frac{23}{24};y=-\frac{17}{24};z=-\frac{11}{24}\)
Chuk pạn hok tốt!
b)Ta thấy: \(\begin{cases}\left|x-2016y\right|\ge0\\\left|x-2012\right|\ge0\end{cases}\)
\(\Rightarrow\left|x-2016y\right|+\left|x-2012\right|\ge0\)(1)
Mà \(\left|x-2016y\right|+\left|x-2012\right|\le0\)(2)
Từ (1) và (2) suy ra \(\left|x-2016y\right|+\left|x-2012\right|=0\)
\(\Rightarrow\begin{cases}\left|x-2012\right|=0\\\left|x-2016y\right|=0\end{cases}\)\(\Rightarrow\begin{cases}x-2012=0\left(1\right)\\x-2016y=0\left(2\right)\end{cases}\)
\(\left(1\right)\Rightarrow x=2012\).Thay vào (2) ta có:
\(2012-2016y=0\)\(\Rightarrow2016y=2012\)\(\Rightarrow y=\frac{503}{504}\)(loại vì \(x,y\in Z\))
Vậy không tồn tại giá trị nào thỏa mãn
Áp dụng tính chất DTSBN ta có:
x-1/3=y-2/2=z-3/1=x-1+y-2+z-3/3+2+1=x+y+z-6/6=30-6/6=24/6=4
Suy ra: x-1/3=y-2/2=z-3/1=4
Suy ra: x-1=12 y-2=8 z-3=4
Suy ra: x=13 y=10 z=7
Suy ra: x.y-y.z=13.10-10.7=130-70=60