K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 11 2015

Vì x là SNT nên :

- Nếu x=2

=>\(x^2-1=2^2-1=4-1=3\)(là SNT)

=> x=2(Chọn)

-Nếu x>2

=> x là số lẻ=>\(x^2\)là số lẻ=>\(x^2-1\)là số chẵn hay \(x^2-1\)chia hết cho 2

  Mà \(x^2-1\)>2(Vì x>2) nên \(x^2-1\)là hợp số

     => x > 2 (Loại)

          Vậy x=2

29 tháng 10 2014

a) chỉ có x=1 thôi em..vì x=1 ta có 12 +16 .1=17 mà 17 là số nguyên tố nên thỏa mãn,x =3 nữa em nhé x=3---> 32 +16.2=57 57 là số nguyên tố...hết oy em..nếu x=5 và lớn hơn 5 thì nó ko phải là số nguyên tố..em thay thử vào là bít..x ko thể là số chẵn đc vì nếu là số chẵn thì x2 +16 ko là số nguyên tố..mà nên nhớ số nguyên tố là số chia cho 1 và chính nó nhé

b) 2x +12 luôn chẵn rồi,luôn chẵn nên nó sẽ chia hết cho 1,chính nó và nhiều số khác....vì thế chỉ có x=0 thì nó là số nguyên tố thôi em à..thay vào 20 +12=13 mà 13 là số nguyên tố

25 tháng 3 2015

Ta có 46y là số chẵn với mọi y.

Nếu x là SNT lớn hơn 2=> 59x lẻ=>59x+46y lẻ(ko thỏa mãn đề bài)

=>x chẵn. Mà chỉ có số 2 là SNT chẵn duy nhất =>x=2

=>y=(2004-59.2)/46=41 

25 tháng 3 2015

bài 1: x=2 ; y=41

bài 2: 3

18 tháng 7 2015

b) +) Nếu p = 3k + 1 (k thuộc N)=> 2p2 + 1 = 2.(3k + 1)2 + 1 = 2.(9k2 + 6k + 1) + 1 = 18k2 + 12k + 2 + 1 = 18k2 + 12k + 3 chia hết cho 3 và lớn hơn 3 => 2p2 + 1 là hợp số (loại)

+) Nếu p = 3k + 2 (k thuộc N) => 2p2 + 1 = 2.(3k + 2)2 + 1 = 2.(9k2 + 12k + 4) + 1 = 18k2 + 24k + 8 + 1 = 18k2 + 24k + 9 chia hết cho 3 và lớn hơn 3 => 2p2 + 1 là hợp số (loại)

Vậy p = 3k, mà p là số nguyên tố => k = 1 => p = 3

18 tháng 7 2015

a) +) Nếu p = 1 => p + 1 = 2; p + 2 = 3; p + 4 = 5 là số nguyên tố

+) Nếu p > 1 :

p chẵn => p = 2k => p + 2= 2k + 2 chia hết cho 2 => p+ 2 là hợp số => loại

p lẻ => p = 2k + 1 => p + 1 = 2k + 2 chia hết cho 2 => p+1 là hợp số => loại

Vậy p = 1

c) p = 2 => p + 10 = 12 là hợp số => loại

p = 3 => p + 10 = 13; p+ 14 = 17 đều là số nguyên tố => p = 3 thỏa mãn

Nếu p > 3 , p có thể có dạng

+ p = 3k + 1 => p + 14 = 3k + 15 chia hết cho 3 => loại p = 3k + 1

+ p = 3k + 2 => p + 10 = 3k + 12 là hợp số => loại p = 3k + 2

Vậy p = 3

28 tháng 11 2018

p = 2 thì \(8p^2+1=8.2^2+1=33\)

Mà 33 chia hết cho 3 và 33 > 3 nên \(8p^2+1\) không là số nguyên tố. (loại p = 2)

Nếu p = 3 thì \(8p^2+1=8.3^2+1=73\)

Vì 73 là số nguyên tố nên p = 3 thỏa mãn

Nếu p là số nguyên tố > 3 thì p có 2 dạng là p = 3k + 1 và p = 3k + 2 \(\left(k\inℕ^∗\right)\)

p = 3k+1 thì \(8p^2+1=8\left(3k+1\right)^2+1=8\left(9k^2+6k+1\right)+1=72k^2+48k+9⋮3\) (loại)

p = 3k+2 thì \(8p^2+1=8\left(3k+2\right)^2+1=8\left(9k^2+12k+4\right)+1=72k^2+96k+33⋮3\) (loại)

Vậy p = 3

13 tháng 12 2019

Mình đang cần gấp,ai trả lời đầy đủ mình k cho

10 tháng 10 2017

x^4 + 4y^4  =  x^4 + 4.x^2.y^2  + 4y^4 - 4.x^2.y^2

                    =  (x^2 + 2y^2)^2  -  (2xy)^2

                     =  (x^2 + 2y^2 - 2xy)(x^2 + 2y^2 + 2xy)

Mà x,y thuộc số tự nhiên nên x^2 + 2y^2 - 2xy  <   x^2 + 2y^2 + 2xy

Mặt khác x^4 + 4y^4 là số nguyên tố nên => x^2 + 2y^2 - 2xy =1

                                                        <=> (x-y)^2  + y^2  = 1

                           => x-y = 1 và y = 0   => x= 1, y = 0 (loại)

                      hoặc x-y = 0 và y = 1    => x=y=1

Vậy x=y=1

25 tháng 3 2020

Cảm ơn các bạn nha