K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 6 2018

Ta có p2-4=(p-2)(p+2) 

Vì p2-4 là số nguyên tố 

Lại có p-2 <p+2

=> p-2=1

=> p=3 

Thử lại p2+4=32+4=13(TM)

Vậy số nguyên tố cần tìm là 3

20 tháng 11 2015

không có số nào đâu bạn vì theo khái niệm thì khi nhân một số nguyên tố với một số nguyên tố thì nó sẽ là hợp số vì khi đó nó đã có trên 2 ước rồi bạn

đúng quá đúng ko các bạn tick cho mình nhé

 

8 tháng 1 2016

cho câu hỏi khác đi khó quá ???

27 tháng 8 2015

giả sử p<q<r

+) Nếu p=3

+) Nếu q=3

Xét số tự nhiên a không chia hết cho3       =>a=3k+1 hoặc a=3k+2 (k thuộc N*)

-với a=3k+1

-với a=3k+2

=>với a không chia hết cho 3

=>a2 không chia hết cho 3 => a2 chia 3 dư 1 (tự chứng minh)

do đó p2;q2;rchia 3 dư 1

=>p2+q2+r2 chia hết cho 3 mà p2+q2+r2>3

=>p2+q2+r2 là hợp số

            Vậy p=3;q=5;r=7

13 tháng 10 2017

có tất cả các số nguyên tố là:2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97.

2 là số chẵn duy nhất mà số chẵn +số chẵn sẽ ra số chẵn nên loại

Nếu B=3 suy ra 3+2=5:3+4=7(chọn)

Nếu B=5 suy ra 5+2=7:5+4=9(Loại)

Tiếp tục đến 83 nhé

Dáp số là 3 và 11

29 tháng 10 2018

2) Vì p là số nguyên tố nên ta xét các trường hợp sau:

a) Với p = 2 thì p + 10 = 2 + 10 = 12 là hợp số (loại), tương tự với p + 20 cũng là hợp số.

Với p = 3 thì p + 10 = 3 + 10 = 13 là số nguyên tố (nhận); p + 20 = 3 + 20 = 23 là số nguyên tố (nhận)

Vì p là số nguyên tố và p > 3 nên p có dạng 3k + 1; 3k + 2

Với p = 3k + 1 => p + 10 = 3k + 1 + 10 = 3k + 11

AH
Akai Haruma
Giáo viên
30 tháng 6 2024

Lời giải:

Nếu $p\vdots 3$ thì do $p$ là snt nên $p=3$

$\Rightarrow p+2=5; p+4=7$ đều là snt (thỏa mãn). 

Khi đó: $p^3+2=3^3+2=29$ là snt (đpcm)

Nếu $p$ chia $3$ dư $1$. Đặt $p=3k+1$ với $k$ tự nhiên.

$\Rightarrow p+2=3k+1+2=3k+3=3(k+1)\vdots 3$. Mà $p+2>3$ với mọi $p$ nguyên tố nên $p+2$ không thể là snt (trái với yêu cầu đề - loại) 

Nếu $p$ chia $3$ dư $2$. Đặt $p=3k+2$ với $k$ tự nhiên.

$\Rightarrow p+4=3k+2+4=3k+6=3(k+2)\vdots 3$. Mà $p+4>3$ với mọi $p$ nguyên tố nên $p+4$ không thể là snt (trái với yêu cầu đề - loại) 

Vậy ta có đpcm.