Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1:
a) Tìm số nguyên tố abcd sao cho ab ,cd là các số nguyên tố và b2=cd + b - c
b) Tìm các số tự nhiên có 2 chữ số mà số đó chia hết cho tích của chúng
c) Tìm số nguyên tố p và q sao cho 7p+q và pq+11 đều là các số nguyên tố
Câu 2:So sánh 2 số sau:
a)31111 và 17139
b)2011 . 23 mũ 2 mũ 3(xl nha,mình k viết dk lũy thừa tầng) và 2010.32 mũ 3 mũ 2
a)
p=(2,3,5,7 ...)
p^2=(4,9,25,49...)
p^2+44=(48,53,93..)
có 53 nguyên tố
ds: p=3
b).p=(6,7,8 ...)
2p+1=(13,15,17...)
4p+1=(25,29,33.....)
l25=5.5=> 4p+1 là hợp số
c)p+6=(02,03,05, ...)
p+8 =(04,05,07,....)
p+12=(08,09,11,...)
P+14=(10,11,13,...)
ds: 5,7,11,13
2.
(ab-ba)=97-79=18=2.9 loại
(ab-ba)=93-39= loại 39 ko nguyen tố
(ab-ba)=73-37=26=13.2 loại
(ab-ba)=71-17=54=9.6loại
a>=b
(ab-ba)=11-11=0
ds: ab=11
Tham khảo:Cho số nguyên tố P. Biết 2P+1 và 4P+1 cũng là số nguyên tố. Tìm P
Xét các trường hợp :
+ P = 2 ---> 2P + 1 = 5 (là số n/tố) ; 4P + 1 = 9 (là hợp số nên P = 2 loại)
+ P = 3 ---> 2P + 1 = 7; 4P + 1 = 13 (đều là số n/tố ---> P = 3 thỏa mãn)
+ P > 3
..Vì P là số n/tố và P > 3 ---> P ko chia hết cho 3 ---> P = 3k+1 hoặc P = 3k+2
a) Nếu P = 3k+1 ---> 2P + 1 = 6k + 3 chia hết cho 3 (là hợp số nên t/h này bị loại)
b) Nếu P = 3k+2 ---> 4P + 1 = 12k + 9 chia hết cho 3 (là hợp số nên t/h này cũng bị loại)
Vậy chỉ có 1 đáp án là P = 3