Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nguyễn Trúc Linh
Trả lời
0
Đánh dấu
4 phút trước (08:28)
Tìm số nguyên tố p sao cho p+2 p+6 p=8 p+12 p+14 đều là số nguyên tố
giải đầy đủ giùm mình nha rồi mình k cho
Toán lớp 6
a)Xét P =5k ( vì P là số nguyên tố)
P+2=7 ; P+6 = 11 ; P+8 =13 ; P +14=19 (T/m)
Xét P =5k+1( k thuộc N)
P+14=5k+1+14 = 5k+15 chia hết cho 5(ko t/m)
Xét P=5k+2
P + 8=5k+10 chia hêt cho 5 ( ko t/m)
Xét P=5k+3
P+2=5k+3=5k+5 chia hết cho 5 ( ko t/m)
Xét P = 5k+4
P+6 =5k+4+6=5k+10 chia hết cho 5 ( ko t/m)
Vậy P = 5
bài a này mik còn có cách giải khác nhưng dài hơn .
b) P là số nguyên tố > 3 nên P có dạng : 3k+1 và 3k+2
TH1 : p= 3k+1 .Ta có:
2p+1 = 2(3k+1) = 6k+2+1 = 6k+3 chia hết cho 3 nên là hợp số ( loại)
TH2:p=3k+2 . Ta có:
2p+1 = 2(3k+2) = 6k+4+1=6k+5 ( là số nguyên tố theo đề bài ta chọn TH này)
Vậy 4p+1 = 4(3k+2)+1=12k+8+1 = 12k+9 . ta thấy 12k và 9 đều chia hết cho 3 nên(12k+9) là hợp số
Do đó 4p+1 là hợp số ( đpcm)
mik làm bài a và b rùi,tick nhé
tớ chỉ biết làm phần d thôi
Vì p là số nguyên tố nên \(\Rightarrow\) p có dạng 3k,3k+1,3k+2
+) Nếu p =3k \(\Rightarrow\)p =3 thì p+2=3+2=5
p+4=3+4=7 là số nguyên tố (chọn)
+) Nếu p=3k+1 \(\Rightarrow\) p+2 =(3k+3) \(⋮\)3 là hợp số (loại)
+) Nếu p=3k+2 \(\Rightarrow\)p+4=(3k+6)\(⋮\)3 là hợp số (loại)
Vậy số cần tìm là 3
Chỉ cần 1 cách của nhuyễn thanh tùng có thể giải quyết cả 4 câu nên 3 câu còn lại e tự làm tiếp nhé
+Nếu p = 2 ⇒ p + 2 = 4 (loại)
+Nếu p = 3 ⇒ p + 6 = 9 (loại)
+Nếu p = 5 ⇒ p + 2 = 7, p + 6 = 11, p + 8 = 13, p + 12 = 17, p + 14 = 19 (thỏa mãn)
+Nếu p > 5, ta có vì p là số nguyên tố nên ⇒ p không chia hết cho 5 ⇒ p = 5k+1, p = 5k+2, p = 5k+3, p = 5k+4
-Với p = 5k + 1, ta có: p + 14 = 5k + 15 = 5 ( k+3) ⋮ 5 (loại)
-Với p = 5k + 2, ta có: p + 8 = 5k + 10 = 5 ( k+2 ) ⋮ 5 (loại)
-Với p = 5k + 3, ta có: p + 12 = 5k + 15 = 5 ( k+3) ⋮ 5 (loại)
-Với p = 5k + 4, ta có: p + 6 = 5k + 10 = 5 ( k+2) ⋮ 5 (loại)
⇒ không có giá trị nguyên tố p lớn hơn 5 thỏa mãn
Vậy p = 5 là giá trị cần tìm
#)Giải :
Xét các trường hợp :
Nếu \(p=2\Rightarrow p+6=8;p+8=10;p+12=14;p+14=16\) (loại)
Nếu \(p=3\Rightarrow p+6=9;p+8=11;p+12=15;p+14=17\) (loại)
Nếu \(p=5\Rightarrow p+6=11;p+8=13;p+12=17;p+14=19\) (chọn)
Nếu \(p>5\) \(\Rightarrow\) p có dạng 5k + 1; 5k + 2; 5k + 3; 5k + 4
Nếu \(p=5k+1\Rightarrow p+14=5k+1+14=5k+15\) (loại)
Nếu \(p=5k+2\Rightarrow p+8=5k+2+8=5k+10\) (loại)
Nếu \(p=5k+3\Rightarrow p+12=5k+3+12=5k+15\) (loại)
Nếu \(p=5k+4\Rightarrow p+6=5k+4+6=5k+10\) (loại)
\(\Rightarrow p=5\)
ĐỂ P LÀ SỐ NGUYÊN TỐ
TH1:XÉT:P=2,P+6=2+6=8[HỢP SỐ],[LOẠI]
:P=3,P+6=3+6=9[HỢP SỐ] LOẠI
P=5,P+6=6+5=11
P+8=5+8=13
P+12=5+12=17
P+14=5+14=19[CHỌN]
TH2: P LỚP HƠN 5
+] P=5K+1 P+14=5K+1+14=5K+15 CHIA HẾT CHO 5
+] P=5K+2 P+8=5K+2+8=5K+10 CHIA HẾT CHO 5
+] P=5K+3 P+12=5K+12+3=5K=15 CHIA HẾT CHO 5
+] P=5K+4 P+6=5K+6+4=5K10 CHIA HẾT CHO 5
VẬY P=5
Các SNT là{ 3;5;7;11;.....}
Xét p=3
=> 3+6=9( hợp số loại)
xét p=5 =>
5+6;5+12;5+18;5+24= 11;17;23;29 ( Vậy có 2 ước chọn )
Xét p=7
=> 7+18=25 ( hợp số loại )
Vậy p=5
tick nhé bạn
Mọi số tự nhiên đều viết được dưới dạng 5k,5k+1,5k+2,5k+3,5k+4
Nếu p = 5k+1 suy ra p+14=5p+15=5﴾p+3﴿chia hết cho 5 ﴾loại﴿
Nếu p = 5k+2 suy ra p+8=5p+10=5﴾p+2﴿ chia hết cho 5 ﴾loại﴿
Nếu p = 5k+3 suy ra p+12=5p+15=5﴾p+3﴿ chia het cho 5 ﴾loại﴿
Nếu p = 5k+4 suy ra p+6= 5p+10=5﴾p+2﴿chia hết cho 5 ﴾loại
Vậy p chỉ có thể bằng 5k.mà p là nguyên tố nên p =5. Vậy p=5