Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Với \(p=3\) \(\Rightarrow2p^4-p^2+16=169=13^2\) thỏa mãn
Với \(p\ne3\Rightarrow p⋮̸3\Rightarrow p^2\) luôn chia 3 dư 1
\(\Rightarrow p^2=3k+1\)
\(\Rightarrow2p^4-p^2+16=2\left(3k+1\right)^2-\left(3k+1\right)+16=3\left(6k^2+3k+5\right)+2\) chia 3 dư 2
\(\Rightarrow2p^4-p^2+16\) ko thể là SCP với \(p\ne3\)
\(\Rightarrow p=3\) là giá trị duy nhất thỏa mãn
Số p4 có 5 ước số tự nhiên là 1 , p, p2 , p3 , p4
Ta có : 1 + p + p2 + p3 + p4 = n2 (n \(\in\) N)
Suy ra : 4n2 = 4p4 + 4p3 + 4p2 + 4p + 4 > 4p4 + 4p3 + p2 = (2p2 + p)2
Và 4n2 < 4p4 + p2 + 4 + 4p3 + 8p2 + 4p = (2p2 + p + 2)2.
Vậy : (2p2 + p)2 < (2n)2 < (2p2 + p + 2)2.
Suy ra :(2n)2 = (2p2 + p + 2)2 = 4p4 + 4p3 +5p2 + 2p + 1
vậy 4p4 + 4p3 +5p2 + 2p + 1 = 4p4 + 4p3 +4p2 +4p + 4 (vì cùng bằng 4n2 )
=> p2 - 2p - 3 = 0 => (p + 1) (p - 3) = 0
do p > 1 => p - 3 = 0 => p = 3
a) Xet p=2
=> p+6=8;p+8=10 ( vô lý )
xet p = 3
=> p+6=9 là hợp số loại
xet p=5
=> p+6=11 ; p+8=13 ; p+12=17 ; p+14=19 ( thỏa mãn )
xet p> 5
=> p=5k+1;5k+2;5k+3;5k+4
=> p+6 ; p+8 ; p+12 ;p+14 lần lượt là hợp số
=> p=5
b) xet p=2=> 2p+1=5
=> 4p+1=9 là hợp số
xet p=3
=> 2p+1=7
=> 4p+1=13 là số nguyên tố ( vô lý)
Do \(2n+1\) và \(3n+1\) là các số chính phương dương nên tồn tại các số nguyên dương a,b sao cho \(2n+1\)\(=a^2\) và \(3n+1=b^2\). Khi đó ta có:
\(2n+9=25.\left(2n+1\right)-16.\left(3n+1\right)=25a^2-16b^2=\left(5a-4b\right).\left(5a+4b\right)\)
Do \(2n+9\) là nguyên tố,\(5a+4b>1\) và \(5a+4b>5a-4b\) nên ta phải có \(5a-4b=1\), tức là: \(b=\dfrac{5a-1}{4}\)
\(\Rightarrow\) ta có: \(\left\{{}\begin{matrix}2n+1=a^2\left(1\right)\\3n+1=\dfrac{\left(5a-1\right)^2}{16}\left(2\right)\end{matrix}\right.\)
Từ (1) : \(2n+1=a^2\Rightarrow n=\dfrac{a^2-1}{2}\) và a > 1 ( do n>0)
Thay vào (2): \(\dfrac{3.\left(a^2-1\right)}{2}+1=\dfrac{\left(5a-1\right)^2}{16}\) => (a - 1).(a - 9) = 0
=> a = 9. Từ đó ta có n = 40
Vậy duy nhất một giá trị n thỏa mãn yêu cầu đề bài là : n = 40