Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Rightarrow x^{2014}+y^{2014}-2\left(x^{2013}+y^{2013}\right)+x^{2012}+y^{2012}=0\)
\(\Leftrightarrow x^{2012}.\left(x-1\right)^2+y^{2012}.\left(y-1\right)^2=0\)
\(\Rightarrow x=1;y=1\)
\(\Rightarrow P=2\)
Bạn tham khảo lời giải tại đây:
Câu hỏi của miumiucute - Toán lớp 9 | Học trực tuyến
Lời giải:
$a^{2014}+b^{2014}=a^{2015}+b^{2015}$
$\Leftrightarrow a^{2014}(a-1)+b^{2014}(b-1)=0(1)$
$a^{2015}+b^{2015}=a^{2016}+b^{2016}$
$\Leftrightarrow a^{2015}(a-1)+b^{2015}(b-1)=0(2)$
Lấy $(2)-(1)$ theo vế thu được: $a^{2014}(a-1)^2+b^{2014}(b-1)^2=0$
Ta thấy $a^{2014}(a-1)^2\geq 0; b^{2014}(b-1)^2\geq 0$ nên để tổng của chúng bằng $0$ thì:
$a^{2014}(a-1)^2=b^{2014}(b-1)^2=0$
Mà $a,b>0$ nên $a=b=1$
Do đó $S=2$
\(2x^{2014}+1005\ge1007\sqrt[1007]{x^{4028}}=1007x^4\)
\(\Leftrightarrow x^{2014}\ge\frac{1007x^4-1005}{2}\)
\(\Rightarrow3\ge\frac{1007\left(x^4+y^4+z^4\right)-3.1005}{2}\)
\(\Rightarrow x^4+y^4+z^4\le3\)