Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{2n+1}{n-5}=\frac{2n-10+11}{n-5}=\frac{2n-10}{n-5}+\frac{11}{n-5}=2+\frac{11}{n-5}\)
=> 11 chia hết cho n-5
n-5 thuộc Ư (11) = { -11; -1; 1; 11}
( rồi bạn thế vô rồi tính nha ^^ ... tương tự đối với b và c)
Ta có n-2chia hết cho n-2 =>n+5=[(n-2)+7]=>7chia hết cho n-2(vì n-2 chia hết cho n-2) =>Để 7chia hết cho n-2 thì n-2 e {1,7} =>n-2e{1,7} =>ne{3,9}
a, \(n+5⋮n-2\)
\(n-2+7⋮n-2\)
\(7⋮n-2\)hay \(n-2\inƯ\left(7\right)=\left\{1;7\right\}\)
n - 2 | 1 | 7 |
n | 3 | 9 |
b, \(2n+1⋮n-5\)
\(2\left(n-5\right)+11⋮n-5\)
\(11⋮n-5\)hay \(n-5\inƯ\left(11\right)=\left\{1;11\right\}\)
Lập bảng tương tự, ngại quá -.-
a, n+5 chia hết cho n-2
=>n-2+7 chia hết cho n-2
=>7 chia hết cho n-2
=>n-2 thuộc Ư(7)={1;-1;7;-7}
=>n thuộc {3;2;9;-5}
b, 2n+1 chia hết cho n-5
=>2n-10+11 chia hết cho n-5
=>2(n-5)+11 chia hết cho n-5
=>11 chia hết cho n-5
=>n-5 thuộc Ư(11)={1;-1;11;-11}
=>n thuộc {6;4;16;-6}
c,n2+3n-13 chia hết cho n+3
=>n(n+3)-13 chia hết cho n+3
=>13 chia hết cho n+3
=>n+3 thuộc Ư(13)={1;-1;13;-13}
=>n thuộc {-2;-4;10;-16}
d, n2+3 chia hết cho n-1
=>n2-n+n+3chia hết cho n-1
=>n(n-1)+n+3 chia hết cho n-3
=>n+3 chia hết cho n-3
=>n-3+6 chia hết cho n-3
=>6 chia hết cho n-3
=>n-3 thuộc Ư(6)={1;-1;2;-2;3;-3;6;-6}
=>n thuộc {4;2;5;1;6;0;9;-3}
n2 + 3n - 13 chia hết cho n + 3
=> n.(n + 3) - 13 chia hết cho n + 3
Vì n.(n + 3) chia hết cho n + 3 => 13 chia hết cho n + 3
=> \(n+3\in\left\{1;-1;13;-13\right\}\)
=> \(n\in\left\{-2;-4;10;-16\right\}\)
n2 + 3n - 13 chia hết cho n + 3
=> n(n + 3) - 13 chia hết cho n + 3
Vì n + 3 chia hết cho n + 3
=> -13 chia hết cho n + 3
=> n + 3 thuộc Ư(-13)
=> n + 3 thuộc {-13; -1; 1; 13}
=> n thuộc {-16; -4; -2; 10}
a) 3n - 1 chia hết cho n - 2
3n - 6 + 6 - 1 chia hết cho n - 2
3.(n - 2) + 5 chia hết cho n - 2
=> 5 chia hết cho n - 2
=> n - 2 thuộc Ư(5) = {1 ; -1 ; 5 ; -5}
Ta có bảng sau :
n - 2 | 1 | -1 | 5 | -5 |
n | 3 | 1 | 7 | -3 |
b) Giống a
c) n - 4 chia hết cho n - 1
n - 1 - 3 chia hết cho n - 1
=> -3 chia hết cho n - 1
=> n -1 thuộc Ư(-3) = {1; -1; 3 ; -3}
Còn lại giống câu a
d) n2 + 4 chia hết cho n2 + 1
n2 + 1 + 3 chia hết cho n2 + 1
=> 3 chia hết cho n2 + 1
=> n2 + 1 thuộc Ư(3) = {1 ; -1 ; 3; -3}
Còn lại giống a
n - 4 \(⋮\)n - 1
=> n - ( 1 + 3 ) \(⋮\)n - 1
=> ( n - 1 ) + 3 \(⋮\)n - 1
=> 3 \(⋮\)n - 1
=> n - 1 \(\in\)Ư ( 3 ) = { 1 ; -1 ; 3 ; -3 }
Với n - 1 = 1 => n = 2
Với n - 1 = -1 => n = 0
Với n - 1 = 3 => n = 4
Với n - 1 = -3 => n = -2
Vậy : n\(\in\){ 2 ; 0 ; 4 ; ;-2 }
Tìm số nguyên n sao cho
a, [3n+2]chia hết cho[n-1]
b,[3n+24]chia hết cho[n-4]
c,[n2+5]chia hết cho[n+1]
a,3n+2 chia hết cho n-1
=>3n-3+5 chia hết cho n-1
=>3(n-1)+5 chia hết cho n-1
Mà 3(n-1) chia hết cho n-1
=>5 chia hết cho n-1
=>n-1\(\in\)Ư(5)={-5,-1,1,5}
=>n\(\in\){-4,0,2,6}
b,3n+24 chia hết cho n-4
=>3n-12+36 chia hết cho n-4
=>3(n-4)+36 chia hết cho n-4
Mà 3(n-4) chia hết cho n-4
=>36 chia hết cho n-4
Bạn làm tiếp nha
c,n2+5 chia hết cho n+1
=>n2-1+6 chia hết cho n+1
=>(n-1).(n+1)+6 chia hết cho n+1
Mà (n-1).(n+1) chia hết cho n+1
=>6 chia hết cho n+1
Bạn tự làm tiếp nha
a) ta có 2n+3=2(n+2)-1
=> 1 chia hết cho n+2
n nguyên => n+2 nguyên => n+1 thuộc Ư (1)={-1;1}
Nếu n+1=-1 => n=-2
Nếu n+1=1 => n=0
Vậy n={-2;0}
b) Ta có n2+2n+5=n(n+2)+5
=> 5 chia hết cho n+2
n nguyên => n+2 nguyên => n+2 thuộc Ư (5)={-5;-1;1;5}
Ta có bảng
n+2 | -5 | -1 | 1 | 5 |
n | -7 | -3 | -1 | 3 |
a) n2 + 3n - 13 chia hết cho n + 3
n(n + 3) - 13 chia hết cho n + 3
13 chia hết cho n + 3
n + 3 thuộc U(13) = {-13 ; -1 ; 1 ; 13}
n thuộc {-16 ; -4; -2 ; 10}
b) n2 + 3 chia hết cho n - 1
n - 1 chia hết cho n - 1
n(n - 1) chia hết cho n - 1
n2 - n chia hết cho n - 1
< = > [(n2 + 3) - (n2 - n)] chia hết cho n - 1
n + 3 chia hết cho n - 1
n - 1 + 4 chia hết cho n - 1
4 chia hết cho n - 1
n - 1 thuộc U(4)= {-4 ; -2 ; -1 ; 1 ; 2; 4}
n thuộc {-3 ; -1 ; 0 ; 2 ; 3 ; 5}