Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tìm số nguyên n sao cho
a, [3n+2]chia hết cho[n-1]
b,[3n+24]chia hết cho[n-4]
c,[n2+5]chia hết cho[n+1]
a,3n+2 chia hết cho n-1
=>3n-3+5 chia hết cho n-1
=>3(n-1)+5 chia hết cho n-1
Mà 3(n-1) chia hết cho n-1
=>5 chia hết cho n-1
=>n-1\(\in\)Ư(5)={-5,-1,1,5}
=>n\(\in\){-4,0,2,6}
b,3n+24 chia hết cho n-4
=>3n-12+36 chia hết cho n-4
=>3(n-4)+36 chia hết cho n-4
Mà 3(n-4) chia hết cho n-4
=>36 chia hết cho n-4
Bạn làm tiếp nha
c,n2+5 chia hết cho n+1
=>n2-1+6 chia hết cho n+1
=>(n-1).(n+1)+6 chia hết cho n+1
Mà (n-1).(n+1) chia hết cho n+1
=>6 chia hết cho n+1
Bạn tự làm tiếp nha
bài 1 :
a)<=>3(n-1)+4 chia hết n-1
=>12 chia hết n-1
=>n-1\(\in\){-1,-2,-3,-4,-6,-12,1,2,3,4,6,12}
=>n\(\in\){0,-1,-2,-3,-5,-11,2,3,4,5,7,13}
b)<=>3(n-4)+28 chia hết n-4
=>84 chia hết n-4
=>n-4\(\in\){ ...} ... là ước của 84 nhé bn tự liệt kê
=>n\(\in\){...} lấy ước của 84 + với 4
a, n - 1 chia hết cho n - 1 => 3 ( n -1 ) chia hết cho n - 1 => 3n - 3 chia hết cho n - 1
Mà 3n + 2 = 3n - 3 + 5 Vì 3n - 3 chia hết cho n - 1 => 5 chia hết cho n - 1
=> n - 1 thuộc 1 và 5 => n thuộc 2 và 6
b, Tương tự
c, \(\hept{\begin{cases}n^2+5⋮n+1\\n+1⋮n+1\end{cases}}\Rightarrow\hept{\begin{cases}n^2+5⋮n+1\\n^2+n⋮n+1\end{cases}}\Rightarrow5-n⋮n+1\)
\(\hept{\begin{cases}5-n⋮n+1\\n+1⋮n+1\end{cases}}\Rightarrow5-n+n+1⋮n+1\)
\(\Rightarrow6⋮n+1\Rightarrow n+1\inƯ\left(6\right)\Rightarrow n+1\in\left\{1;2;3;6\right\}\Rightarrow n\in\left\{0;1;2;5\right\}\)
a) Ta có : 3n + 2 chia hết cho n - 1
=> 3n + 2 - 3.( n - 1) chia hết cho n - 1
=> 3n + 2 - ( 3n - 3 ) chia hết cho n - 1
=> 3n + 2 - 3n + 3 chia hết cho n - 1
=> 5 chia hết cho n -1
=> n -1 thuộc Ư(5) = { 1 ; - 1 ; 5 ; -5}
Ta có bảng ;
n-1 | 1 | -1 | 5 | -5 |
n | 2 | 0 | 6 | -6 |
Vậy n thuộc { 2;0;6;-6}
b) Ta có : 3n + 24 chia hết cho n -4
=> 3n + 24 - 3.(n-4) chia hết cho n -4
=> 3n + 24 - (3n - 12 ) chia hết cho n -4
=> 3n + 24 - 3n + 12 chia hết cho n -4
=> 36 chia hết cho n -4
=> n - 4 thuộc Ư(36) ( bạn tự làm nhé)
c) Tương tự nhé
a/
n-6 chia hết cho n-1
=>(n-1)-5 chia hết cho n-1
=>n-1 E U(5)={1;-1;5;-5}
=>n E {0;2;6;-4}
vì n E N => n E{0;2;6}
b/3n+2 chia hết cho n-1
=>3(n-1)+5 chia hết cho n-1
=>5 chia hết cho n-1
=>n-1 E U(5)={1;-1;5;-5}
=>n E {0;2;6;-4}
vì n E N => n E{0;2;6}
c/
3n+24 chia hết cho n-4
=>3(n-4)+36 chia hết cho n-4
=>36 chia hết cho n-4
=>n-4 E U(36) ={1;-1;2;-2;3;-3;4;-4;9;-9;12;-12;18;-18;36;-36}
=> =>n E {5;3;6;2;7;1;8;0;13;-5;16;-8;22;-14;40;-32}
vì n E N
=>n E {0;1;3;5;6;7;8;13;16;22;40;}
.........mỏi tay V~
a, n-6 chia hết cho n-1
=> n-1-5 chia hết cho n-1
=> -5 chia hết cho n-1
=> n-1 thuộc Ư(-5)= -5;-1;1;5
Sau đó bạn kẻ bảng ra. Những câu sau làm tương tự, bạn chỉ cần biến đổi sao cho vế phải có dạng là 1 tích và 1 số nguyên, tích đó chia hết cho vế trái, rồi suy ra vế trái thuộc ước của số nguyên đó là được. Chọn nha
a) \(3n+2⋮n-1\Rightarrow3\left(n-1\right)+5⋮n-1\)
Suy ra \(5⋮n-1\Rightarrow n-1\inƯ\left(5\right)=\left(1;-1;5;-5\right)\)
Với n - 1 = 1 => n = 2
Với n - 1 = -1 => n = 0
Với n - 1 = 5 => n = 6
Với n - 1 = -5 => n = -4
Vậy \(n\in\left(2;0;6;-4\right)\)
-11 là bội của n-1
=> -11 chia hết cho n-1
=> n-1 thuộc Ư(-11)
n-1 | n |
1 | 2 |
-1 | 0 |
11 | 12 |
-11 | -10 |
KL: n thuộc......................
a)(3n+2):(n-1) = 3 + 5/(n-1)
Để 3n+2 chia hêt cho n-1
thì n-1 phải là ước của 5
do đó:
n-1 = 1 => n = 2
n-1 = -1 => n = 0
n-1 = 5 => n = 6
n-1 = -5 => n = -4
Vậy n = {-4; 0; 2; 6}
thì 3n+2 chia hêt cho n-1.
b)ta có: 3n +24 chia het cho n-4
=> 3n+24-3n+12 chia hết cho n-4
=> 36 chia hết cho n-4
=> n-4 thuộc Ư(36)={1;2;3;4;6;9;12;36} và các giá trị âm tương ứng
Mà n-4>=-4
=> n-4=-4;-3;-2;-1;1;2;3;4;6;9;12;36
=> n=0;1;2;3;5;6;7;8;10;13;16;40
Còn bài c từ từ suy nghĩ
bai toi giong bai cau ay:
a, n+5 chia het cho n-2
b, 2n+1 chia het cho n - 5
c, n^2+3n - 13 chia het cho n+3
d, n^2 +3 chia het cho n-1
a)3n+2/n-1=>3n-3+5/n-1.Vì3n-3/n-1=>5/n-1=>n-1 thuộc ước 5
b)3n+24/n-4=>3n-12+36/n-4.Vì 3n-12/n-4=>36/n-4=>n-4 thuộc ước 36
c)n^2+5/n+1=>n*n+5/n+1=>n*(n+1)+4/n+1.Vì n*(n+1)/n+1=>4/n-1=>n+1 thuộc ước 4
a/ \(\frac{3n+2}{n-1}=\frac{3\left(n-1\right)+5}{n-1}=\frac{3}{n-1}+6\)
=>n-1 thuộc ƯỚC của 3
=>n-1=1=>n=2
=>n-1=-1=>n=0
=>n-1=3=>n=4
=>n-1=-3=>n=-1
b/ \(\frac{3\left(n+4\right)+12}{n-4}=\frac{3}{n-4}+13\)
=>n-4 thuộc ƯỚC của 3
=>n-4=1=>n=5
=>n-4=-1=>n=3
=>n-4=3=>n=7
=>n-4=-3=>n=1
câuc(uoc cua5) tương tự mình giải vậy ko bít đúng ko nữa