Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\frac{4n+3}{2n+1}=\frac{4n+2+1}{2n+1}=2+\frac{1}{2n+1}\)
Để có phép chia hết thì \(1⋮2n+1\Leftrightarrow2n+1\inƯ\left(1\right)=\left\{\pm1\right\}\)
b) \(\frac{3n-5}{4n+8}=\frac{3n+6-11}{4n+8}=\frac{3}{4}-\frac{11}{4n+8}\)
Để có phép chia hết thì \(11⋮4n+8\Leftrightarrow4n+8\inƯ\left(11\right)=\left\{\pm1;\pm11\right\}\)
c) \(\frac{n+3}{n-1}=\frac{n-1+4}{n-1}=1+\frac{4}{n-1}\)
Để có phép chia hết thì \(4⋮n-1\Leftrightarrow n-1\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
d) \(\frac{3n+1}{11-n}=\frac{3n-33+34}{11-n}=-1+\frac{34}{11-n}\)
Để có phép chia hết thì \(34⋮11-n\Leftrightarrow11-n\inƯ\left(34\right)=\left\{\pm1;\pm2;\pm17;\pm34\right\}\)
Lập bảng xét giá trị cho từng trường hợp
a, \(2n+7⋮n+1\)
\(2\left(n+1\right)+5⋮n+1\)
\(5⋮n+1\)hay \(n+1\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
n + 1 | 1 | -1 | 5 | -5 |
n | 0 | -2 | 4 | -6 |
b, \(4n+9⋮2n+3\)
\(2\left(2n+3\right)+3⋮2n+3\)
\(3⋮2n+3\)hay \(2n+3\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
2n + 3 | 1 | -1 | 3 | -3 |
2n | -2 | -4 | 0 | -6 |
n | -1 | -2 | 0 | -3 |
a) n + 2 chia hết cho n - 1
=> n - 1 + 3 chia hết cho n - 1
Do n - 1 chia hết cho n - 1 => 3 chia hết cho n - 1
Mà n thuộc N => n - 1 > hoặc = -1
=> n - 1 thuộc {-1 ; 1 ; 3}
=> n thuộc {0 ; 2 ; 4}
Những câu còn lại lm tương tự
Giải:
a) \(n+2⋮n-1\)
\(\Rightarrow\left(n-1\right)+3⋮n-1\)
\(\Rightarrow3⋮n-1\)
\(\Rightarrow n-1\in\left\{\pm1;\pm3\right\}\)
+) \(n-1=1\Rightarrow n=2\)
+) \(n-1=-1\Rightarrow n=0\)
+) \(n-1=3\Rightarrow n=4\)
+) \(n-1=-3\Rightarrow n=-2\)
Vậy \(n\in\left\{2;0;4;-2\right\}\)
b) \(2n+7⋮n+1\)
\(\Rightarrow\left(2n+2\right)+5⋮n+1\)
\(\Rightarrow2\left(n+1\right)+5⋮n+1\)
\(\Rightarrow5⋮n+1\)
\(\Rightarrow n+1\in\left\{\pm1;\pm5\right\}\)
+) \(n+1=1\Rightarrow n=0\)
+) \(n+1=-1\Rightarrow n=-2\)
+) \(n+1=3\Rightarrow n=2\)
+) \(n+1=-3\Rightarrow n=-4\)
Vậy \(n\in\left\{0;-2;2;-4\right\}\)
Vì 3 n chia hết cho (5-2n)
=>2.3n+3(5-2n)=15 chia hết cho 5-2n
=>5-2n thuộc Ư(15)={1,3,5,15,-1,-3-5-15}
Mặt khác 5-2n nhỏ hơn hoặc bằng 5
5-2n thuộc {-15,-5,-3,-1,1,3,5}
=>N thuộc { 10,5,4,3,2,1,0}
Vì 3n chia hết cho 5-2n
=>2.3n+3(5-2n)=15 chia hết cho 5 - 2n
=> 5-2n thuộc U (15)€{1,3,5,15,-1,-3,-5,-15}
Mặt khác 5 trừ 2 n nhỏ hơn hoặc bằng 5
=>5-2n€{-15,-5,-3,-1,1,3,5}
=>N€{10,5,4,3,2,1,0}
\(a,\left(n+5\right)⋮\left(n+2\right)\)
\(\left(n+2+3\right)⋮\left(n+2\right)\)
\(\Rightarrow3⋮\left(n+2\right)\)
\(\Rightarrow n+2\in\left(1;-1;3;-3\right)\)
\(\Rightarrow n\in\left(-1;-3;1;-5\right)\)
b,c,d Tự làm
* Do p > 3 , mà một số > 3 khi chia cho 3 có hai trường hợp xảy ra : 3k + 1 ; 3k + 2.(k thuộc N)(ko lấy 3k vì 3k là hợp số)
Với p = 3k + 1
=> p + 8 = 3k + 1 + 8 = 3k + 9 ko phải là SNT
Với p = 3k + 2
=> p + 8 = 3k + 10 là SNT
=> p + 100 = 3k + 2 + 100 = 3k + 102 là hợp số .
Vậy p + 100 là hợp số
a)Ta có: 2n+9 chia hết n+3
<=>(2n+9)-2(n+3) chia hết n+3
<=>(2n+9)-(2n+6) chia hết n+3
<=>3 chia hết n+3
<=>n+3 thuộc {1;3}
<=>n=0
Vậy n = 0
b) Ta có 3n-1 chia hết cho 3-2n
=> 6n-2 chia hết cho 3-2n
=> 3(3-2n)-11 chia hết cho 3-2n
=> 11 chia hết cho 3-2n
=> 3-2n là ước của 11 và n là số tự nhiên => 3-2n thuộc {1;11}
• 3-2n=1 => n=1
• 3-2n=11=> n ko là số tự nhiên
Vậy n=1
c) (15 - 4n) chia hết cho n
=> 15 chia hết cho n
=> n ∈ Ư(15) = {-15; -5; -3; -1; 1; 3; 5; 15}
mà n ∈ N và n < 4
=> n = {1; 3}
d) n=7 vì (n+13)chia hết cho (n-5) và n lớn hơn 5
e) 15-2n = 13+ (2-2n) = 13+2(1-n) : n-1 =
13n−1−213n-1-2
=> n-1 là ước dương của 13
=> n-1 = 13 hoặc n-1 = 1 hoặc n = -1 hoặc n=-13
=> n=14 hoặc n= 2 hoặc n=0 howjc n=-12
Mà n thuộc N và n<8 => n=0 hoặc n=2
g)
6n+9⋮4n−16n+9⋮4n−1
⇒2.(6n+9)⋮4n−1⇒2.(6n+9)⋮4n−1
⇒12n+18⋮4n−1⇒12n+18⋮4n−1
⇒12n−3+21⋮4n−1⇒12n−3+21⋮4n−1
⇒3.(4n−1)+21⋮4n−1⇒3.(4n−1)+21⋮4n−1
Vì 3.(4n−1)⋮4n−1⇒21⋮4n−13.(4n−1)⋮4n−1⇒21⋮4n−1
Mà 4n - 1 chia 4 dư 3; 4n−1≥−14n−1≥−1 do n∈Nn∈N
⇒4n−1∈{−1;3;7}⇒4n−1∈{−1;3;7}
⇒4n∈{0;4;8}⇒4n∈{0;4;8}
⇒n∈{0;1;2}
a) n+3 chia hết cho n-1
=> n-1+4 chia hết cho n-1
=> 4 chia hết cho n-1 ( vì n-1 chia hết cho n-1)
=> n-1 thuộc Ư(4)={1;2;4}
Với n-1=1 => n=2
với n-1=2=>n=3
Với n-1=4=>n=5
Vậy...
b) 4n+3 chia hết cho 2n-1
=> 4n-2+5 chia hết cho 2n-1
=> 5 chia hết cho 2n-1
=> 2n-1 thuộc Ư(5)={1;5}
Với 2n-1=5=> 2n=6=> n=3
Với 2n-1=1=> 2n=2=> n=1
Vậy...
c) 4n-5 chia hết cho 2n-1
=> 4n-2+7 chia hết cho 2n-1
=> 7 chia hết cho 2n-1( vì 4n-2 chia hết cho 2n-1)
=> 2n-1 thuộc Ư(7)={1;7}
Với 2n-1=1=> n=1
Với 2n-1=7=> n=4
Vây..
k cho mk
a) n+3 chia hết cho n-2
=>n-2+5 chia hết cho n-2
=> 5 chia hết cho n-2
U(5)=1;5
=>n=3;7
Ta có: n + 3 chia hết cho n - 2
<=> n - 2 + 5 chia hết n - 2
=> 5 chia hết n - 2
=> n - 2 thuộc Ư(5) = {-1;1;-5;5}
=> n = {1;3;-3;7}
a, Ta có:
\(\dfrac{4n-11}{4n-8}\)=\(\dfrac{4n-8-3}{4n-8}=\dfrac{4n-8}{4n-8}+\dfrac{-3}{4n-8}=1+\dfrac{-3}{4n-8}\)
\(\Rightarrow\)-3 \(⋮\) 4n - 8
\(\Rightarrow\)4n-8 \(\in\) Ư (-3) ={\(\pm\)1; \(\pm\)3}
Ta có bảng sau:
Vậy x \(\in\){ \(\varnothing\) }
b, Ta có:
2n + 1 \(⋮\) n + 1
\(\Rightarrow\) 2.(n+1) \(⋮\) n+1
\(\Rightarrow\)2 \(⋮\) n+1
\(\Rightarrow\) n+1 \(\in\) Ư (2) = { -1 ; -2; 1; 2 }
Ta có các trường hợp sau:
n + 1 = -1 \(\Rightarrow\) n= -2
n + 1 = -2 \(\Rightarrow\) n= -3
n + 1 = 1 \(\Rightarrow\) n= 0
n + 1 = 2 \(\Rightarrow\) n= 1
Vậy n \(\in\) { -2;-3;0;1 }