K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 2 2020

xét A = n^3 + 2018n

A = n^3 + 2019n - n

A = n(n^2 - 1) + 2019n

A = n(n-1)(n+1)

có (n-1)n(n+1) chia hết cho 3 

  2019 chia hết cho 3 => 2019n chia hết cho 3

=> A chia hết cho 3                                                  (1)

xét B = 2020^2019 + 4

2020 chia 3 dư 1 => 2020^2019 chia 3 dư 1

4 chia 3 dư 1

=> B chia 3 dư 2               (2)

đển n^3 + 2018n = 2020^2019               + 4              (3)

(1)(2)(3) => n thuộc tập hợp rỗng

22 tháng 11 2019

I. Nội qui tham gia "Giúp tôi giải toán"

1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;

2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.

3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.

Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.

24 tháng 2 2020

Ta có : \(n^3+2018n=n\left(n^2-1+2019\right)=\left(n-1\right)n\left(n+1\right)+2019n⋮3\forall n\inℤ\) (*)

Lại có : \(2020\equiv1\left(mod3\right)\)

\(\Rightarrow2020^{2019}\equiv1\left(mod3\right)\)

Và : \(4\equiv1\left(mod3\right)\)

Do đó : \(2020^{2019}+4\equiv2\left(mod3\right)\)

hay \(2020^{2019}+4⋮̸3\) . Điều này mâu thuẫn với (*)

Do đó, không tồn tại số nguyên n thỏa mãn đề.

12 tháng 3 2021

Ta có \(n^3+2018n=n\left(n-1\right)\left(n+1\right)+2019n⋮3\).

Lại có \(2020^{2019}+4\equiv1^{2019}+4\equiv2\left(mod3\right)\).

Từ đó suy ra không tồn tại n thoả mãn đề bài.