K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 3 2018

để M là số nguyên 

\(\Rightarrow2n-7⋮n-5\Rightarrow2\left(n-5\right)+3.\)

\(\Rightarrow n-5\inƯ\left(3\right)=\left[\pm1;\pm3\right]\Rightarrow\)

+n - 5 = -1 \(\Rightarrow\)n = 4

+n - 5 = -3 \(\Rightarrow\)n = 2

+n - 5 = 1 \(\Rightarrow\)n = 6

+n - 5 = 3 \(\Rightarrow\)n = 8

6 tháng 3 2018

Để M là số nguyên

=> M thuộc Z

=> \(\frac{2n-7}{n-5}\)Thuộc Z

=> 2n - 7 \(⋮\)n - 5

=> 2n - 10 + 3 \(⋮\)n - 5

=> 2.( n - 5 ) + 3 \(⋮\)n - 5 mà 2 . ( n - 5 ) \(⋮\)n - 5 => 3 \(⋮\)n - 5

=> n - 5 thuộc Ư ( 3 ) = { - 3 ; - 1 ; 1 ; 3 }

=> n thuộc { - 2 ; 4 ; 6 ; 8 }

Vậy n thuộc { - 2 ; 4 ; 6 ; 8 }

21 tháng 3 2017

a) \(M=\frac{2n-7}{n-5}=\frac{2n-10}{n-5}+\frac{3}{n-5}=2+\frac{3}{n-5}\)

Để M là số nguyên thì \(\frac{3}{n-5}\) là số nguyên <=> 3 chia hết cho n-5

<=>n-5\(\in\)Ư(3)={-3;-1;1;3} <=> n\(\in\){2;4;6;8}

22 tháng 3 2017

b)\(\left|x-3\right|=2x+4\Leftrightarrow\orbr{\begin{cases}x-3=-2x-4\\x-3=2x+4\end{cases}}\Leftrightarrow\orbr{\begin{cases}3x=-1\\-x=7\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=-\frac{1}{3}\\x=-7\end{cases}}\)

29 tháng 3 2016

\(M=\frac{n-5+n-2}{n-5}=1+\frac{n-2}{n-5}\)

\(M=1+\frac{n-5+3}{n-5}=2+\frac{3}{n-5}\)

Muốn M nguyên 

=> n-5 thuộc Ư(3) ={-1;1;3;-3}

Thay vào và tính lần lượt được n={4;6;2;8}

6 tháng 6 2020

a) *) \(\frac{n-1}{3-2n}\)

Gọi d là ƯCLN (n-1;3-2n) (d\(\inℕ\))

\(\Rightarrow\hept{\begin{cases}n-1⋮d\\3-2n⋮d\end{cases}\Rightarrow\hept{\begin{cases}2n-2⋮d\\3-2n⋮d\end{cases}\Leftrightarrow}\left(2n-2\right)+\left(3-2n\right)⋮d}\)

\(\Leftrightarrow1⋮d\left(d\inℕ\right)\Rightarrow d=1\)

=> ƯCLN (n-1;3-2n)=1

=> \(\frac{n-1}{3-2n}\)tối giản với n là số tự nhiên

*) \(\frac{3n+7}{5n+12}\)

Gọi d là ƯCLN (3n+7;5n+12) \(\left(d\inℕ\right)\)

\(\Rightarrow\hept{\begin{cases}3n+7⋮d\\5n+12⋮d\end{cases}\Rightarrow\hept{\begin{cases}15n+35⋮d\\15n+36⋮d\end{cases}\Leftrightarrow}\left(15n+36\right)-\left(15n+35\right)⋮d}\)

\(\Leftrightarrow1⋮d\left(d\inℕ\right)\)

\(\Rightarrow d=1\)

=> ƯCLN (3n+7;5n+12)=1

=> \(\frac{3n+7}{5n+12}\) tối giản với n là số tự nhiên

6 tháng 6 2020

b) *) \(\frac{2n+5}{n-1}\left(n\ne1\right)\)

\(=\frac{2\left(n-1\right)+7}{n-1}=2+\frac{7}{n-1}\)

Để \(\frac{2n+5}{n-1}\) nhận giá trị nguyên => \(2+\frac{7}{n-1}\) nhận giá trị nguyên

2 nguyên => \(\frac{7}{n-1}\)nguyên

=> 7 chia hết cho n-1

n nguyên => n-1 nguyên => n-1\(\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\)

Ta có bảng

n-1-7-117
n-6028

vậy n={-6;0;2;8} thì \(\frac{2n+5}{n-1}\) nhận giá trị nguyên

5 tháng 3 2017

2n + 3/7 laôs nguyên suy ra 2n +3 chia hết cho 7.

=> 7 thuộc Ư(2n + 3)

Từ đó bạn tính tiếp nhé!!!

5 tháng 3 2017

\(\frac{2n+3}{7}\) để có giá trị là số nguyên thì :

\(\Rightarrow2n+3\inƯ\left(7\right)=\left\{-1,-7,1,7\right\}\)

Ta có bảng :

2n+3-1-717
n-2-5-12

Vậy \(n=\left\{-2,-5,-1,2\right\}\)

2 tháng 4 2018

Gọi ƯCLN\(\left(2n+3;3n+7\right)=d\)

\(\Rightarrow\orbr{\begin{cases}2n+3⋮d\Rightarrow3.\left(2n+3\right)⋮d\Rightarrow6n+9⋮d\\3n+7⋮d\Rightarrow2.\left(3n+7\right)⋮d\Rightarrow6n+14⋮d̸\end{cases}}\)

\(\Rightarrow\left(6n+14\right)-\left(6n+9\right)⋮d\)

\(\Rightarrow5⋮d\Rightarrow d\in1;5\)

\(+d=5\Rightarrow6n+9⋮5\Rightarrow5n+\left(n+9\right)⋮5\)

\(\Rightarrow n+9⋮5\Rightarrow n+4⋮5\Rightarrow n=5k-4\)

Vậy n=5k-4 thì rút gọn đc

Vậy \(n\ne5k-4\Rightarrowđpcm\)

21 tháng 4 2019

đợi xí.

mk đổi nick 

nha,tối nay !

CBHT

a. Để A có giá trị của số nguyên thì:

n-5 chia hết cho n+1

<=> n+1-6 chia hết cho n+1

<=> 6 chia hết cho n+1 (vì n+1 chia hết cho n+1)

Hay n+1 thuộc ước của 6 ={1;-1;2;-2;3;-3;6;-6}

Ta có bảng sau:

n+11-12-23-36-6
n0-21-32-45-7
\(A=\frac{n-5}{n+1}\)-5(lấy)7(lấy)-2(lấy)-4(lấy)-1(lấy)3(lấy)0(lấy)2(lấy)

 

Vậy n thuộc{0;-2;1;-3;2;-4;5;-7}

b.Ta có:

\(A=\frac{n-5}{n+1}=\frac{n+1-6}{n+1}=1-\frac{6}{n+1}\)

=> \(A=\frac{n-5}{n+1}\)tối giản <=> \(\frac{6}{n+1}\) tối giản

<=> 6 và n+1 có ước chung là 1

Vì 6 chia hết cho 2;3 và 6 nên n+1 không chia hết cho 2;3 và 6.

Vì n+1 không chia hết cho 3 nên n+1 khác 3.k(k thuộc N*)=> n khác 3.k-1

Vì n+1 không chia hết cho 2 nên n+1 khác 2.m(m thuộc N*)=> n khác 2.m-1

Mà 2x3=6 nên n khác 2.m-1 và 3.k-1 thì A là phân số tối giản.

Vậy n khác 2.m-1 và 3.k-1 thì A là phân số tối giản.

Chúc bạn học tốt nhé!ok

 

ột số kí hiệu mình k biết được mong bạn thông cảm nhé! bucminh