Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) A = \(\frac{3n+9}{n-4}\)= \(\frac{3\left(n-4\right)+21}{n-4}\)= 3 + \(\frac{21}{n-4}\)
Để A là số nguyên , n-4 phải là ước của 21. Ta được :
n-4 | -21 | -7 | -3 | -1 | 1 | 3 | 7 | 21 |
n | -17 | -3 | 1 | 3 | 5 | 7 | 11 | 25 |
A | 2 | 0 | -4 | -18 | 24 | 10 | 6 | 4 |
b) Biến đổi : B = 3 + \(\frac{8}{2n-1}\)
2n-1 là ước lẻ của 8 .
Đáp số :
n | 1 | 0 |
B | 11 | -5 |
Muốn A có giá trị nguyên thì 3n + 9 phải chia hết cho n - 4
=> 3n - 12 + 21 chia hết cho n - 4
3n - 12 chia hết cho n - 4 với mọi n . Vậy 21 chia hết cho n - 4
=> n - 4 là Ư(21)
=> n-4 là Ư( 1 ; -1 ; 3 ; -3 ; 7 ; -7 ; 21 ; -21 }
Xét n - 4 = 1
n = 1 + 4 = 5
Xét n - 4 = -1
n = -1 + 4 = 3
Xét n - 4 = 3
n = 3 + 4 = 7
Xét n - 4 = -3
n = -3 + 4 = 1
Xét n - 4 = 7
n = 7 + 4 = 11
Xét n - 4 = -7
n = -7 + 4 = -3
Xét n - 4 = 21
n = 21 + 4
n = 25
Xét n - 4 = -21
n = -21 + 4 = -17
Vậy n { 5 ; 3 ; 7 ; 1 ; 11 ; -3 ; 25 ; -17 }
Với n = 5 , ta có giá trị A = 24
Với n = 3 , ta có giá trị A = -18
Với n = 7 , ta có giá trị A = 10
Với n = 1 , ta có giá trị A = -4
Với n = 11 , ta có giá trị A = 6
Với n = -3 ; ta có giá trị A = 0
....
Vì A nguyên nên 3n + 2 chia hết cho n - 1 => 3n - 3 + 5 chia hết cho n - 1 => 5 chia hết cho n - 1 => n - 1 thuộc Ư(5) = { -1 ; 1 ; -5 ; 5 }
=> n thuộc { 0 ; 2 ; -; 6 }
Vậy n thuộc { 0 ; 2 ; -; 6 } thoản mãn đề bài.
A=3n+2/n-1=3+5/n-1
để a có gia trị nguyên thì 3+5/n-1 có giá trị nguyên mà 3 lầ số nguyên thi 5/n-1 có giá trị nguyên nên
n-1 thuộc ư(5)={1;-1;5;-5} nên n thuoocj tập hợp {2;0;6;-4}
\(B=\frac{3n+1}{n+1}=\frac{3n+3}{n+1}-\frac{2}{n+1}=3-\frac{2}{n+1}\)
B nguyên khi \(\frac{2}{n+1}\) nguyên <=> 2 chia hết cho n+1 <=>n+1 thuộc Ư(2)={-2;-1;1;2}
<=>n thuộc {-3;-2;0;1}
\(B=\frac{3n+1}{n+1}=\frac{3\left(n+1\right)-2}{n+1}=3-\frac{2}{n+1}\)
B nguyên <=> \(\frac{2}{n+1}\)nguyên
<=> \(2⋮n+1\)<=> \(n+1\inƯ\left(2\right)=\left\{-2;-1;1;2\right\}\)
n+1 | -2 | -1 | 1 | 2 |
n | -3 | -2 | 0 | 1 |
1, \(\left|2x-27\right|^{2011}+\left(3y+10\right)^{2012}=0\)
Vì \(\hept{\begin{cases}\left|2x-27\right|^{2011}\ge0\forall x\\\left(3y+10\right)^{2012}\ge0\forall x\end{cases}\Rightarrow VT\ge0\forall x}\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}2x-27=0\\3y+10=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{27}{2}\\y=-\frac{10}{3}\end{cases}}}\)
Vậy ...................
Ta có : \(\frac{3x+2}{n-1}=\frac{3\left(n-1\right)+5}{n-1}=3+\frac{5}{n-1}\)
Để : \(\frac{3n+2}{n-1}\) nguyên thì \(\frac{5}{n-1}\) nguyên
Để : \(\frac{5}{n-1}\) thì \(n-1\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\)
\(\Rightarrow n\in\left\{-4;0;2;6\right\}\)
\(A=\frac{3n-9}{n-4}=\frac{3n-12+3}{n-4}=\frac{3\left(n-4\right)+3}{n-4}=\frac{3\left(n-4\right)}{n-4}+\frac{3}{n-4}=3+\frac{3}{n-4}\)
Để p/s A có giá trị nguyên thì 3 chia hết cho n+4
=>n+4 E Ư(3)={-3;-1;1;3}
=>n E {-7;-5;-3;-1}
Vậy........
\(B=\frac{6n+5}{2n-1}=\frac{6n-3+8}{2n-1}=\frac{3.\left(2n-1\right)+8}{2n-1}=\frac{3.\left(2n-1\right)}{2n-1}+\frac{8}{2n-1}=3+\frac{8}{2n-1}\)
Để B là số nguyên thì 8 chia hết cho 2n-1
Tới đây tương tự câu trên nhé
Để A nguyên thì 3n - 9 chia hết n - 4
<=> (3n - 12) + 3 chia hết n - 4
=> 3.(n - 4) + 3 chia hết n - 4
=> 3 chia hết n - 4
=> n - 4 thuộc Ư(3)
=> Ư(3) = {-1;1;-3;3}
Ta có:
n - 4 | -1 | 1 | -3 | 3 |
n | 3 | 5 | 1 | 7 |
Ta có:A=\(\frac{3n+2}{n-1}=\frac{3n-3+5}{n-1}=3+\frac{5}{n-1}\)
Để A nguyên thì \(\frac{5}{n-1}\in Z\Rightarrow n-1\inƯ\left(5\right)=\left\{-5,-1,1,5\right\}\)
\(\Rightarrow n\in\left\{-4,0,2,6\right\}\)
Vậy............
Ta có : A= (3n+2)/(n-1)
= [3.( n-1)+5]/(n-1)
=3+[5/(n-1)]
Để A nguyên thì 5 phải chia hết cho n-1
=> n-1 thuộc ước của 5
Ta có bảng sau
Vậy x\(\in\){ -4 ; 0 ; 2 ; 6 }