Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{n^4-3n^3-n^2+3n+7}{n-3}=\frac{n^3\left(n-3\right)-\left(n^2-3n\right)+7}{n-3}=\frac{n^3\left(n-3\right)-n\left(n-3\right)+7}{n-3}\)
\(=\frac{\left(n-3\right)\left(n^3-n\right)+7}{n-3}=\frac{\left(n-3\right)\left(n^3-n\right)}{n-3}+\frac{7}{n-3}=n^3-n+\frac{7}{n-3}\)
Theo đề bài n là số nguyên => \(n^3-n\) là số nguyên
Để \(n^3-n+\frac{7}{n-3}\) có giá trị là 1 số nguyên <=> \(\frac{7}{n-3}\) có giá trị là 1 số nguyên
=> n - 3 là ước của 7 => Ư(7) = { - 7; - 1; 1; 7 }
Ta có bảng sau :
n - 3 | - 7 | - 1 | 1 | 7 |
n | - 4 | 2 | 4 | 10 |
Mà x là số nguyên lớn nhất => x = 10
Vậy x = 10
Baif1:
Vì biểu thức trên cần lớn hơn 1,nên ta có bất phương trình :
\(\frac{x}{x-6}-\frac{6}{x-9}>1\)
\(\Leftrightarrow\frac{x^2-15x+36}{\left(x-6\right)\left(x-9\right)}\ge\frac{x^2-15x+54}{\left(x-6\right)\left(x-9\right)}\)
\(\Leftrightarrow\frac{x^2-15x+36-\left(x^2-15x+54\right)}{\left(x-6\right)\left(x-9\right)}>0\)
\(\Leftrightarrow\frac{-18}{\left(x-6\right)\left(x-9\right)}>0\)
Vì \(-18< 0\Rightarrow\left(x-6\right)\left(x-9\right)< 0\)
Xét hai trường hợp:
TH1:\(\orbr{\begin{cases}x-6>0\\x-9< 0\end{cases}\Leftrightarrow\orbr{\begin{cases}x>6\\x< 9\end{cases}}}\)
\(\Leftrightarrow6< x< 9\)(tm)(1)
TH2:\(\orbr{\begin{cases}x-6< 0\\x-9>0\end{cases}\Leftrightarrow\orbr{\begin{cases}x< 6\\x>9\end{cases}\Leftrightarrow}9< x< 6\left(ktm\right)}\)(2)
Từ (1) và (2) \(\Rightarrow6< x< 9\) lại có \(x\in Z\Rightarrow x\in\left\{7;8\right\}\)
Bài 2:
Ta có:\(2\left(n+2\right)^2+n\left(1-n\right)\ge\left(n-5\right)\left(n+5\right)\)
\(\Leftrightarrow2n^2+8n+8+n-n^2\ge n^2-25\)
\(\Leftrightarrow2n^2-n^2-n^2+8n+n\ge-25-8\)
\(\Leftrightarrow9n\ge-33\)
\(\Leftrightarrow n\ge\frac{-33}{9}\)(1)
Để n không âm thỏa mãn 7-3n là số nguyên,thì \(3n\in Z\Rightarrow n\inℤ+\)(2)
Từ (1) và (2) \(\Rightarrow n\in\left\{0;1;2;............\right\}\)
Đề bài 2 có sai không vậy chứ nó có nhiều sỗ quá bạn ạ
a: \(A=28n^2+27n+5\)
\(=28n^2+20n+7n+5\)
\(=4n\left(7n+5\right)+\left(7n+5\right)\)
\(=\left(4n+1\right)\left(7n+5\right)\)
Nếu n=0 thì \(A=\left(4\cdot0+1\right)\left(7\cdot0+5\right)=1\cdot5=5\) là số nguyên tố
=>Nhận
Khi n>0 thì (4n+1)(7n+5) sẽ là tích của hai số nguyên dương khác 1
=>A=(4n+1)(7n+5) không thể là số nguyên tố
=>Loại
Vậy: n=0
b: \(B=n\left(n^2+n+7\right)-2\left(n^2+n+7\right)\)
\(=\left(n^2+n+7\right)\left(n-2\right)\)
Để B là số nguyên tố thì B>0
=>\(\left(n^2+n+7\right)\left(n-2\right)>0\)
=>n-2>0
=>n>2
\(B=\left(n^2+n+7\right)\left(n-2\right)\)
TH1: n=3
\(B=\left(3^2+3+7\right)\left(3-2\right)=9+3+7=9+10=19\) là số nguyên tố
=>Nhận
TH2: n>3
=>n-2>1 và \(n^2+n+7>1\)
=>\(B=\left(n-2\right)\left(n^2+n+7\right)\) là tích của hai số nguyên dương lớn hơn 1
=>B chắc chắn không thể là số nguyên tố
=>Loại
c: \(C=n\left(n^2+n+7\right)+\left(n^2+n+7\right)\)
\(=\left(n^2+n+7\right)\left(n+1\right)\)
TH1: n=0
=>\(C=\left(0+0+7\right)\left(0+1\right)=7\cdot1=7\) là số nguyên tố
=>Nhận
TH2: n>0
=>n+1>0 và \(n^2+n+7>1\)
=>\(C=\left(n+1\right)\left(n^2+n+7\right)\) là tích của hai số nguyên dương lớn hơn 1
=>C chắc chắn không thể là số nguyên tố
=>Loại
d: \(D=n^2-1=\left(n-1\right)\left(n+1\right)\)
Để D là số nguyên tố thì D>0
=>(n-1)(n+1)>0
TH1: \(\left\{{}\begin{matrix}n-1>0\\n+1>0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}n>1\\n>-1\end{matrix}\right.\)
=>n>1
TH2: \(\left\{{}\begin{matrix}n-1< 0\\n+1< 0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}n< 1\\n< -1\end{matrix}\right.\)
=>n<-1
Khi n=2 thì \(D=2^2-1=4-1=3\) là số nguyên tố(nhận)
Khi n>2 thì n-1>1 và n+1>3>1
=>D=(n-1)(n+1) là tích của hai số tự nhiên lớn hơn 1
=>D không là số nguyên tố
=>Loại
Khi n=-2 thì \(D=\left(-2\right)^2-1=4-1=3\) là số nguyên tố
=>Nhận
Khi n<-2 thì n-1<-3 và n+1<-1
=>D=(n-1)(n+1)>0 và D bằng tích của hai số nguyên dương lớn hơn 1
=>D không là số nguyên tố
=>Loại
(n^4-3n^3+n^2+3n+7)/(n-3)
=(n^4-3n^3+n^2-3n+6n-18+25)/(n-3)
=(n^3(n-3)+n(n-3)+6(n-3)+25)/(n-3)
=((n-3)(n^3+n+6)+25)/(n-3)
=(n-3)(n^3+n+6)/(n-3)+25/(n-3)
=n^3+n+6+25/(n-3)
khi n nguyên thì n^3+n+6 nguyên nên để n^3+n+6+25/(n-3) nguyên thì 25/(n-3) nguyên
suy ra n-3 thuộc ước của 25
n đạt giá trị lớn nhất khi n-3=25
n=28
(n