Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(n+2⋮n-3\Leftrightarrow\left(n+2\right)-\left(n-3\right)⋮n-3\Leftrightarrow5⋮n-3\)
\(\Leftrightarrow n-3\in\left\{-1;1;-5;5\right\}\Leftrightarrow n\in\left\{2;4;-2;8\right\}\)
\(Vậy:n\in\left\{2;4;-2;8\right\}\)
ta có : n + 2 = ( n - 3 ) + 3 \(⋮\)n - 3
=> 3 \(⋮\)n - 3
=> n -3 \(\in\)Ư( 3 )
=> n - 3 \(\in\){ 1 ; 3 ; -1 ; -3 }
=> n \(\in\){ 4; 6 ; 2 ; 0 }
vậy n \(\in\){ 4 ; 6 ; 2 ; 0 }
Ta có:3n-5 chia hết cho n-2
=>3n-6+1 chia hết cho n-2
=>3.n-3.2+1 chia hết cho n-2
=>3.(n-2)+1 chia hết cho n-2
Mà 3.(n-2) chia hết cho n-2
=>1 chia hết cho n-2
=>n-2\(\in\)Ư(1)={-1,1}
=>n\(\in\){1,3}
3(n-2)+1 chia hết cho n-2
Vì 3(n-2) chia hết cho n-2
=>1 chia hết cho n-2 => n-2 thuộc Ư(1)={-1;1}
=>n={1;3}
3.(n + 2) chia hêt cho n - 2
3n + 6 chia hết cho n - 2
3n - 6 + 12 chia hết cho n - 2
3.(n - 2) + 12 chia hết cho n - 2
=> 12 chia hết cho n - 2
=> n - 2 thuộc Ư(12) = {1 ; 2 ; 3 ; 4; 6 ; 12}
Ta có bảng sau :
n - 2 | 1 | 2 | 3 | 4 | 6 | 12 |
n | 3 | 4 | 5 | 6 | 8 | 14 |
Ta có
\(\frac{n+2}{n-3}=\frac{\left(n-3\right)+5}{n-3}=1+\frac{5}{n-3}\)
Đẻ n+2 chia hết cho n-2
=>5 chia hết cho n-3 hay n-3 thuộc Ư(5)
=>n-3 thuộc(-5;-1;1;5)
n=(-2;2;4;8)
Nếu bài làm của mình đúng thì tick nha bạn cảm ơn.
Chúc bạn năm mới mạnh khoẻ,vui vẻ,may mắn,học giỏi nha.
a, \(\frac{n+5}{n-2}\)=\(\frac{n-2}{n-2}\)+\(\frac{7}{n-2}\)=1+\(\frac{7}{n-2}\)=>7 chia hết cho n-2 => n-2 thuộc ước của 7 = (-1;-7;1;7) . Ta có :
n-2=-7=> n=-5 ; n-2=-1=>n=1;n-2=1=>n=3;n-2=7=>n=9.
vậy n=-5;-1;3;9 thì n+5 chia hết cho n-2
c, \(\frac{n^2+3}{n-1}\)=\(\frac{n^2-1}{n-1}\)+\(\frac{4}{n-1}\)=>4 chia hết cho n-1 .
Đến đây giải tương tự phần a , chúc bạn hóc tốt.
1) n + 3 chia hết cho n-2
(n-2) + 5 chia hết cho n-2
Mà n-2 chia hết cho n-2
=> 5 chia hết cho n-2
=> n-2 thuộc Ư(5)
Ư(5)={1,5}
n - 2 = 1
n = 3
n - 2 -= 5
n = 7
n thuộc {3,7}
a/ \(n+3⋮n-2\)
Mà \(n-2⋮n-2\)
\(\Leftrightarrow5⋮n-2\)
\(\Leftrightarrow n-2\inƯ\left(5\right)\)
Suy ra :
+) n - 2 = 1 => n = 3
+) n - 2 = 5 => n = 7
+) n - 2 = -1 => n = 1
+) n - 2 = -5 => n = -3
Vậy ............
b/ \(2n+1⋮n-3\)
Mà \(n-3⋮n-3\)
\(\Leftrightarrow\hept{\begin{cases}2n+1⋮n-3\\2n-6⋮n-3\end{cases}}\)
\(\Leftrightarrow7⋮n-3\)
\(\Leftrightarrow n-3\inƯ\left(7\right)\)
Suy ra :
+) n - 3 = 1 => n = 4
+) n - 3 = 7 => n = 10
+) n - 3 = -1 => n = 2
+) n - 3 = -7 => n = -4
Vậy ..
Xin lỗi nha, mik mới lớp 5 nên chỉ biết giải 2 bài còn lại. Bài 2 vì chữ số hàng chục gấp 3 lần chữ số hàng đơn vị mà số đó lại chia hết cho 2 => số đó là 62 (vì số 2 ở hàng đơn vị là số duy nhất có thể nhân với 3 mà ra số cí một chữ số). Bài 3 thì:
Hàng nghìn: 4 lần chọn
Hang trăm: 3 lần chọn
Hàng chục: 2 lần chọn
Hàng đơn vị: 1 lần chọn
=> Số các số hạng có the viết được là: 4 x 3 x 2 = 24
Kết bạn với tôi đi thtl_nguyentranhuyenanh nha
Câu trả lời tôi ko biết bởi mới học lớp 5
Mình có nghe nói là 2 nhà toán học Alfred North Whitehead và Bertrand Russell đã chứng minh 1+1=2 trong quyển Principa Mathemaa (tạm dịch: nền tảng của toán học). Họ đã mất hơn 360 trang để chứng minh điều này. Thầy giáo bạn gãi đầu là phải.
Phép chứng minh này dựa trên một bộ 9 tiên đề về tập hợp gọi tắt là ZFC (Zermelo–Fraenkel). Rất nhiều lý thuyết số học hiện đại dựa trên những tiên đề này. Nếu có người chứng minh được một trong những tiên đề đó là sai (VD: 2 tập hợp có cùng các phần tử mà vẫn không bằng nhau) thì rất có thể dẫn đến 1+1 != 2
Có n2-2 chia hết cho n+3
=>n.n-2 chia hết cho n+3
=>n.n+3-5 chia hết cho n+3
=>5 chia hết cho n+3
=>n+3 thuộc Ư(5)={1;5;-1;-5}
Với n+3=1 =>n=(-2)
....
Còn lại tự lm nha bn