Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(3-2n⋮n+1\)
Ta có \(3-2n=-2-2n+5=-2\left(n+1\right)+5\)
Do \(-2\left(n+1\right)⋮n+1\Rightarrow3-2n⋮n+1\)
\(\Leftrightarrow n+1\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
\(\Leftrightarrow n\in\left\{0;-2;4;-6\right\}\)
...
\(\frac{3-2n}{n+1}\)
\(=\frac{-2n+3}{n+1}\)
\(=\frac{-2n-2+5}{n+1}\)
\(=\frac{2\left(n+1\right)+5}{n+1}\)
\(=-2+\frac{5}{n+1}\)
\(\Rightarrow\left(n+1\right)\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
\(\Rightarrow n\in\left\{0;-2;4;-6\right\}\)
Có 2n-4 chia hết cho n+2
=>2(n+2)8 chia hết cho n+2
=> 8 chia hết cho n+2
=>n+2 thuộc Ư(8)={1;2;4;8;-1;-2;-4;-8}
Phần cuối bạn tự làm nha
Để \(2n-4⋮n+2\)
\(\Leftrightarrow2n+4-8⋮n+2\)
\(\Leftrightarrow2\left(n+2\right)-8⋮n+2\)
Vì \(2\left(n+2\right)⋮n+2\)( vì \(n\in Z\))
\(\Rightarrow8⋮n+2\)
\(\Leftrightarrow n+2\inƯ\left(8\right)\)( vì \(n\in Z\))
\(\Leftrightarrow n+2\in\left\{1;-1;2;-2;4;-4;8;-8\right\}\)
\(\Leftrightarrow n\in\left\{-1;-3;0;-4;2;-6;6;-10\right\}\)
\(-7⋮n+1\Leftrightarrow n-1\inƯ\left(-7\right)=\left\{\pm1;\pm7\right\}\)
\(\Leftrightarrow x\in\left\{2;0;8;-6\right\}\)
Vậy ..
dễ thấy tạo ra 6 góc đối đỉnh
từ cạnh 1 tìm thêm được 5 góc
cạnh 2 4 góc
cạnh 3 3 góc
cạnh 4 2 góc
cạnh 5 1 góc
21 góc thì phải
ờm có vẻ vậy
#Học-tốt
ta có : \(6n-3=3\times\left(2n-2\right)+3\) chia hết cho 2n-2 khi
3 chia hết cho 2n-2
mà 2n-2 là số chẵn nên 3 không thể chia hết cho 2n-2 vậy không tồn tại số tự nhiên thỏa mãn
a, Ta có : \(\text{n + 5 = (n - 1)+6}\)
Vì \(\text{(n-1) ⋮ n-1}\)
Nên để \(\text{n+5 ⋮ n-1}\)⋮ `n-1`
Thì \(\text{6 ⋮ n-1}\)
\(\Rightarrow\) \(\text{n - 1 ∈ Ư(6)}\)
\(\Rightarrow\) \(\text{n - 1 ∈}\) \(\left\{\text{±1;±2;±3;±6}\right\}\)
\(\Rightarrow\) \(\text{n ∈}\) \(\left\{\text{0;-1;-2;-5;2;3;4;7}\right\}\) \(\text{( TM )}\)
\(\text{________________________________________________________}\)
b, Ta có : \(\text{2n-4 = (2n+4)- 8 = 2(n+2) - 8}\)
Vì \(\text{2(n+2) ⋮ n+2}\)
Nên để \(\text{2n-4 ⋮ n+2}\)
Thì \(\text{8 ⋮ n+2}\)
\(\Rightarrow\) \(\text{n + 2 ∈ Ư(8)}\)
\(\Rightarrow\) \(\text{n + 2 ∈}\) \(\left\{\text{±1;±2;±4;±8}\right\}\)
\(\Rightarrow\) \(\text{n ∈}\) \(\left\{\text{-3;-4;-6;-10;-1;0;2;6}\right\}\) ( TM )
\(\text{_________________________________________________________________ }\)
c, Ta có :\(\text{ 6n + 4 = (6n + 3) +1 = 3(2n+1) + 1}\)
Vì \(\text{3(2n+1) ⋮ 2n+1}\)
Nên để\(\text{ 6n+4 ⋮ 2n+1}\)
Thì \(\text{1 ⋮ 2n+1}\)
\(\Rightarrow\) \(\text{2n + 1 ∈ Ư(1)}\)
\(\Rightarrow\) \(\text{2n + 1 ∈}\) \(\left\{\text{±1}\right\}\)
\(\Rightarrow\) \(\text{2n ∈}\) \(\left\{\text{-2;0}\right\}\)
\(\Rightarrow\) \(\text{n ∈}\) \(\left\{\text{-1;0}\right\}\) ( TM )
\(\text{_______________________________________}\)
Ta có : \(\text{3 - 2n = -( 2n - 3 ) = -( 2n + 2 ) + 5 = -2( n+1)+5}\)
Vì \(\text{-2(n+1) ⋮ n+1}\)
Nên để \(\text{3-2n ⋮ n+1}\)
Thì\(\text{ 5 ⋮ n + 1}\)
\(\Rightarrow\) \(\text{n + 1 ∈}\) \(\left\{\text{±1;±5}\right\}\)
\(\Rightarrow\) \(\text{n ∈}\) \(\text{-2;-6;0;4}\) ( TM )
MK làm phần c) còn các phần khác bn tự làm nha:
6n+4 \(⋮\)2n+1
+)Ta có:2n+1\(⋮\)2n+1
=>3.(2n+1)\(⋮\)2n+1
=>6n+3\(⋮\)2n+1(1)
+)Theo bài ta có:6n+4\(⋮\)2n+1(2)
+)Từ(1) và (2) suy ra (6n+4)-(6n+3)\(⋮\)2n+1
=>6n+4-6n-3\(⋮\)2n+1
=>1\(⋮\)2n+1
=>2n+1\(\in\)Ư(1)=1
=>2n+1=1
+)2n+1=1
2n =1-1
2n =0
n =0:2
n =0\(\in\)Z
Vậy n=0
Chúc bn học tốt
Bài giải
a) Ta có n + 5 \(⋮\)n - 1 (n \(\inℤ\))
=> n - 1 + 6 \(⋮\)n - 1
Vì n - 1 \(⋮\)n - 1
Nên 6 \(⋮\)n - 1
Tự làm tiếp.
b) Ta có 2n - 4 \(⋮\)n + 2
=> 2(n + 2) - 8 \(⋮\)n + 2
Vì 2(n + 2) \(⋮\)n + 2
Nên 8 \(⋮\)n + 2
Tự làm tiếp.
c) Ta có 6n + 4 \(⋮\)2n + 1
=> 6n + 4 - 3(2n + 1) \(⋮\)2n + 1
=> 6n + 4 - (6n + 3) \(⋮\)2n + 1
=> 1 \(⋮\)2n + 1
Tự làm tiếp
d) Ta có 3 - 2n \(⋮\)n + 1
=> -2n + 3 \(⋮\)n + 1
=> -2n - 2 + 5 \(⋮\)n + 1
=> -2(n + 1) + 5 \(⋮\)n + 1 (-2n - 2 + 5 = -2n + (-2).1 + 5 = -2(n + 1) + 5)
Vì -2(n + 1) \(⋮\)n + 1
Nên 5 \(⋮\)n + 1
Tự làm tiếp.
\(7⋮\left(2n-3\right)\Leftrightarrow2n-3\inƯ\left(7\right)=\left\{-7,-1,1,7\right\}\)
\(\Leftrightarrow2n\in\left\{-4,2,4,10\right\}\Leftrightarrow n\in\left\{-2,1,2,5\right\}\).
Bài giải
Ta có: 6n + 4 \(⋮\)2n + 1 (n \(\inℤ\))
=> 6n + 4 - 3(2n + 1) \(⋮\)2n + 1
=> 1 \(⋮\)2n + 1
=> 2n + 1 \(\in\)Ư (1)
Ư (1) = {1; -1}
2n + 1 = 1 hay -1
2n = 1 - 1 hay -1 - 1
2n = 0 hay -2
n = 0 : 2 hay -2 : 2
n = 0 hay -1
Vậy n = 0 hay -1