K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 3 2020

Bài giải

Ta có: 6n + 4 \(⋮\)2n + 1   (n \(\inℤ\))

=> 6n + 4 - 3(2n + 1) \(⋮\)2n + 1

=> 1 \(⋮\)2n + 1

=> 2n + 1 \(\in\)Ư (1)

Ư (1) = {1; -1}

2n + 1 = 1 hay -1

2n       = 1 - 1 hay -1 - 1

2n       = 0 hay -2

  n       = 0 : 2 hay -2 : 2

  n       = 0 hay -1

Vậy n = 0 hay -1

14 tháng 3 2020

Ta có:                                                      chc:chia hết cho

3-2n chc n+1

=>3-2n-2+2 chc n+1

=>3-/2n+2/+2 chc n+1

=>3-2/n+1/+2 chc n+1  <1>

Lại có:

n+1 chc n+1

=>2/n+1/ chc n+1    <2>

Từ <1>,<2>=> 3-2 chc n+1

hay 1 chc n+1

=> n+1 th Ư của 1

Mà Ư của 1 là 1 và -1

=>n+1=1                                        =>n+1=-1

n=0                                                     n=-2

Vậy n=0, n=-2

                         CHÚC BẠN HỌC TỐT

14 tháng 3 2020

\(3-2n⋮n+1\)

Ta có \(3-2n=-2-2n+5=-2\left(n+1\right)+5\)

Do \(-2\left(n+1\right)⋮n+1\Rightarrow3-2n⋮n+1\)

\(\Leftrightarrow n+1\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)

\(\Leftrightarrow n\in\left\{0;-2;4;-6\right\}\)

...

14 tháng 3 2020

\(\frac{3-2n}{n+1}\)

\(=\frac{-2n+3}{n+1}\)

\(=\frac{-2n-2+5}{n+1}\)

\(=\frac{2\left(n+1\right)+5}{n+1}\)

\(=-2+\frac{5}{n+1}\)

\(\Rightarrow\left(n+1\right)\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)

\(\Rightarrow n\in\left\{0;-2;4;-6\right\}\)

Có 2n-4 chia hết cho n+2

=>2(n+2)8 chia hết cho n+2

=> 8 chia hết cho n+2

=>n+2 thuộc Ư(8)={1;2;4;8;-1;-2;-4;-8}

Phần cuối bạn tự làm nha

13 tháng 3 2020

Để  \(2n-4⋮n+2\)

\(\Leftrightarrow2n+4-8⋮n+2\)

\(\Leftrightarrow2\left(n+2\right)-8⋮n+2\)

Vì \(2\left(n+2\right)⋮n+2\)( vì \(n\in Z\))

\(\Rightarrow8⋮n+2\)

\(\Leftrightarrow n+2\inƯ\left(8\right)\)( vì \(n\in Z\))

\(\Leftrightarrow n+2\in\left\{1;-1;2;-2;4;-4;8;-8\right\}\)

\(\Leftrightarrow n\in\left\{-1;-3;0;-4;2;-6;6;-10\right\}\)

4 tháng 3 2020

\(-7⋮n+1\Leftrightarrow n-1\inƯ\left(-7\right)=\left\{\pm1;\pm7\right\}\)

\(\Leftrightarrow x\in\left\{2;0;8;-6\right\}\)

Vậy ..

4 tháng 3 2020

ta có:  -7 chia hết cho n-1

         =>n-1 thuộc Ư(-7)={+-1;+-7}

         Vậy n thuộc {2;0;8;-6}

20 tháng 2 2020

15 góc thì phải

dễ thấy tạo ra 6 góc đối đỉnh 

từ  cạnh 1 tìm thêm được 5 góc 

cạnh 2 4 góc

cạnh 3 3 góc 

cạnh 4 2 góc

cạnh 5 1 góc

21 góc thì phải

ờm có vẻ vậy

#Học-tốt

NM
7 tháng 12 2021

ta có : \(6n-3=3\times\left(2n-2\right)+3\) chia hết cho 2n-2 khi

3 chia hết cho 2n-2

mà 2n-2 là số chẵn nên 3 không thể chia hết cho 2n-2 vậy không tồn tại số tự nhiên thỏa mãn

18 tháng 12 2021

Thanks bạn nha !!!

8 tháng 8 2023

a, Ta có : \(\text{n + 5 = (n - 1)+6}\)

Vì \(\text{(n-1) ⋮ n-1}\)

Nên để \(\text{n+5 ⋮ n-1}\) `n-1`

Thì \(\text{6 ⋮ n-1}\) 

\(\Rightarrow\) \(\text{n - 1 ∈ Ư(6)}\)

\(\Rightarrow\) \(\text{n - 1 ∈}\) \(\left\{\text{±1;±2;±3;±6}\right\}\)

\(\Rightarrow\) \(\text{n ∈}\) \(\left\{\text{0;-1;-2;-5;2;3;4;7}\right\}\) \(\text{( TM )}\)

\(\text{________________________________________________________}\)

b, Ta có : \(\text{2n-4 = (2n+4)- 8 = 2(n+2) - 8}\)

Vì \(\text{2(n+2) ⋮ n+2}\)

Nên để \(\text{2n-4 ⋮ n+2}\)

Thì \(\text{8 ⋮ n+2}\)

\(\Rightarrow\) \(\text{n + 2 ∈ Ư(8)}\)

\(\Rightarrow\) \(\text{n + 2 ∈}\) \(\left\{\text{±1;±2;±4;±8}\right\}\)

\(\Rightarrow\) \(\text{n ∈}\) \(\left\{\text{-3;-4;-6;-10;-1;0;2;6}\right\}\) ( TM )

\(\text{_________________________________________________________________ }\)

c, Ta có :\(\text{ 6n + 4 = (6n + 3) +1 = 3(2n+1) + 1}\)

Vì \(\text{3(2n+1) ⋮ 2n+1}\)

Nên để\(\text{ 6n+4 ⋮ 2n+1}\)

Thì \(\text{1 ⋮ 2n+1}\)

\(\Rightarrow\) \(\text{2n + 1 ∈ Ư(1)}\)

\(\Rightarrow\) \(\text{2n + 1 ∈}\) \(\left\{\text{±1}\right\}\)

\(\Rightarrow\) \(\text{2n ∈}\) \(\left\{\text{-2;0}\right\}\)

\(\Rightarrow\) \(\text{n ∈}\) \(\left\{\text{-1;0}\right\}\) ( TM )

\(\text{_______________________________________}\)

Ta có : \(\text{3 - 2n = -( 2n - 3 ) = -( 2n + 2 ) + 5 = -2( n+1)+5}\)

Vì \(\text{-2(n+1) ⋮ n+1}\)

Nên để \(\text{3-2n ⋮ n+1}\)

Thì\(\text{ 5 ⋮ n + 1}\)

\(\Rightarrow\) \(\text{n + 1 ∈}\) \(\left\{\text{±1;±5}\right\}\)

\(\Rightarrow\) \(\text{n ∈}\) \(\text{-2;-6;0;4}\) ( TM )

 

MK làm phần c) còn các phần khác bn tự làm nha:

6n+4 \(⋮\)2n+1

+)Ta có:2n+1\(⋮\)2n+1

           =>3.(2n+1)\(⋮\)2n+1

           =>6n+3\(⋮\)2n+1(1)

+)Theo bài ta có:6n+4\(⋮\)2n+1(2)

 +)Từ(1) và (2) suy ra (6n+4)-(6n+3)\(⋮\)2n+1

                                =>6n+4-6n-3\(⋮\)2n+1

                                =>1\(⋮\)2n+1

                               =>2n+1\(\in\)Ư(1)=1

                               =>2n+1=1

    +)2n+1=1

      2n    =1-1

      2n   =0

      n     =0:2

     n      =0\(\in\)Z

Vậy n=0

Chúc bn học tốt

29 tháng 1 2020

Bài giải

a) Ta có n + 5 \(⋮\)n - 1   (n \(\inℤ\))

=> n - 1 + 6 \(⋮\)n - 1

Vì n - 1 \(⋮\)n - 1

Nên 6 \(⋮\)n - 1

Tự làm tiếp.

b) Ta có 2n - 4 \(⋮\)n + 2

=> 2(n + 2) - 8 \(⋮\)n + 2

Vì 2(n + 2) \(⋮\)n + 2

Nên 8 \(⋮\)n + 2

Tự làm tiếp.

c) Ta có 6n + 4 \(⋮\)2n + 1

=> 6n + 4 - 3(2n + 1) \(⋮\)2n + 1

=> 6n + 4 - (6n + 3) \(⋮\)2n + 1

=> 1 \(⋮\)2n + 1

Tự làm tiếp

d) Ta có 3 - 2n \(⋮\)n + 1

=> -2n + 3 \(⋮\)n + 1

=> -2n - 2 + 5 \(⋮\)n + 1

=> -2(n + 1) + 5 \(⋮\)n + 1 (-2n - 2 + 5 = -2n + (-2).1 + 5 = -2(n + 1) + 5)

Vì -2(n + 1) \(⋮\)n + 1

Nên 5 \(⋮\)n + 1

Tự làm tiếp.

DD
24 tháng 5 2021

\(7⋮\left(2n-3\right)\Leftrightarrow2n-3\inƯ\left(7\right)=\left\{-7,-1,1,7\right\}\)

\(\Leftrightarrow2n\in\left\{-4,2,4,10\right\}\Leftrightarrow n\in\left\{-2,1,2,5\right\}\).