K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(2n-1⋮n+1\)

\(\Rightarrow2\left(n+1\right)-3⋮n+1\)

\(\Rightarrow3⋮n+1\)

\(\Rightarrow n+1\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)

\(\Rightarrow n+1=1;-1;3;-3\)

\(\Rightarrow n=0;-2;2;-4\)

1 tháng 4 2020

Ta có 2n-1=(2n+2)-3=2(n+1)-3

Vì theo bài ra 2n-1 chia hết cho n+1 nên 2(n+1)-3 cũng chia hết cho n+1

Mà 2(n+1) chia hết cho n+1 nên 3 chia hết cho n+1

=>n+1 thuộc Ư(3)

=> Ta xét bảng sau

n+11-13-3
n0-22-4

Vậy tìm được n=0;-2;2;-4

nhớ tích đúng cho mình nha chúc bn học tốt

    

a,n-3 chia hết n+3

có n-3 chia hết n+3

<=> n+3-6chia hết n+3

vì n+3 chia hết n+3 nên 6 chia hết n+3

=>n+3 thuộc ước 6 ={1;2;3;6}

=> n = 4;5;6;9

\(2n-1⋮n+1\)

\(\Rightarrow2n+2-3⋮n+1\)

\(\Rightarrow3⋮n+1\)

\(\Rightarrow n+1\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)

\(\Rightarrow n+1=1;-1;3;-3\)

\(\Rightarrow n=0;-2;2;-4\)

18 tháng 1 2016

2n-1=2n+6-7

2n+6 chia hết cho n+3 rồi

suy ra 7 chia hết n+3

suyra n+3 thuộc {+-1;+-7}

suy ra n thuộc {-10;-4;-2;4}

21 tháng 1 2016

vu quy dat cảm ơn bạn nhiều, mình hiểu dạng bài này rồi ^^ 

30 tháng 1 2016

de thoi bang 356

30 tháng 1 2016

Ta có:

       2n+1 chia hết cho n-3

<=> 2n+1-6+6 chia hết cho n-3

<=> 2n-6+7 chia hết cho n-3

Vì 2n-6 chia hết cho n-3 mà 2n-6+7 chia hết cho n-3 => 7 chia hết cho n-3

=>n-3 thuộc Ư(7)={-1;1;-7;7}

Nếu n-3=-1 =>n=2(t/m)

Nếu n-3=1 =>n=4(t/m)

Nếu n-3=-7 =>n=-4(t/m)

Nếu n-3=7 =>n=10(t/m)

Vậy n= -4;2;4;10

MK làm phần c) còn các phần khác bn tự làm nha:

6n+4 \(⋮\)2n+1

+)Ta có:2n+1\(⋮\)2n+1

           =>3.(2n+1)\(⋮\)2n+1

           =>6n+3\(⋮\)2n+1(1)

+)Theo bài ta có:6n+4\(⋮\)2n+1(2)

 +)Từ(1) và (2) suy ra (6n+4)-(6n+3)\(⋮\)2n+1

                                =>6n+4-6n-3\(⋮\)2n+1

                                =>1\(⋮\)2n+1

                               =>2n+1\(\in\)Ư(1)=1

                               =>2n+1=1

    +)2n+1=1

      2n    =1-1

      2n   =0

      n     =0:2

     n      =0\(\in\)Z

Vậy n=0

Chúc bn học tốt

29 tháng 1 2020

Bài giải

a) Ta có n + 5 \(⋮\)n - 1   (n \(\inℤ\))

=> n - 1 + 6 \(⋮\)n - 1

Vì n - 1 \(⋮\)n - 1

Nên 6 \(⋮\)n - 1

Tự làm tiếp.

b) Ta có 2n - 4 \(⋮\)n + 2

=> 2(n + 2) - 8 \(⋮\)n + 2

Vì 2(n + 2) \(⋮\)n + 2

Nên 8 \(⋮\)n + 2

Tự làm tiếp.

c) Ta có 6n + 4 \(⋮\)2n + 1

=> 6n + 4 - 3(2n + 1) \(⋮\)2n + 1

=> 6n + 4 - (6n + 3) \(⋮\)2n + 1

=> 1 \(⋮\)2n + 1

Tự làm tiếp

d) Ta có 3 - 2n \(⋮\)n + 1

=> -2n + 3 \(⋮\)n + 1

=> -2n - 2 + 5 \(⋮\)n + 1

=> -2(n + 1) + 5 \(⋮\)n + 1 (-2n - 2 + 5 = -2n + (-2).1 + 5 = -2(n + 1) + 5)

Vì -2(n + 1) \(⋮\)n + 1

Nên 5 \(⋮\)n + 1

Tự làm tiếp.

8 tháng 1 2017

n+6 ⋮ n-5

Vì n-5 ⋮ n-5

=> n+6 - (n-5) ⋮ n-5

=> n+6 - n+5 ⋮ n-5

=> 11 ⋮ n-5

=> n-5 \(\in\)Ư(11)

=> n-5 \(\in\){1;-1;11;-11}

=> n \(\in\){6;4;16;-6}

Vậy...

3n+22 ⋮ n-5

Vì 3(n-5) ⋮ n-5

=> 3n+22 - 3(n-5) ⋮ n-5

=> 3n+22 - 3n+15 ⋮ n-5

=> 37 ⋮ n-5

=> n-5 \(\in\)Ư(37) 

=> n-5 \(\in\){1;-1;37;-37}

=> n \(\in\){6;4;42;-32}

Vậy...

2(n+1) ⋮ n-2

Vì 2(n-2) ⋮ n-2

=> 2(n+1) - 2(n-2) ⋮ n-2

=> 2n+2 - 2n+4 ⋮ n-2

=> 6 ⋮ n-2

=> n-2 \(\in\)Ư(6)

=> n-2 \(\in\){1;-1;2;-2;3;-3;6;-6}

=> n \(\in\){3;1;4;0;5;-1;8;-4}

Vậy...

8 tháng 1 2017

a) (n+6)-(n-5) chia hết cho n-5

suy ra 1chia hết cho n-5 

phần còn lại tự giải

b) 3n+2 chia hết cho n-5

3n-15+37 chia hết cho n-5

(3n-15)+37 chia hết cho n-5

3x(n-5)+37 chia hết cho n-5

37 chia hết cho n-5

tự giải phần sau

c) chịu