Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(\Rightarrow\orbr{\begin{cases}x=0\\x+2=0\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x=-2\end{cases}}}\)
b)\(\Rightarrow\orbr{\begin{cases}x^2+1=0\\x^2-4=0\end{cases}\Rightarrow\orbr{\begin{cases}x^2=-1\left(VL\right)\\x^2=4\Rightarrow x=2,-2\end{cases}}}\)VL là vô lý do bình phương luôn là số dương
Ủng hộ minhf bằng cachs k đúng nha
a, Ta có: 3xy - 5 = x2 + 2y
=> 3xy - x2 - 2y = 5
=> y.( 3x - 2 ) = 5 + x.x
=> y = \(\frac{5+x^2}{3x-2}\)
=> \(x^2+5⋮3x-2\)( vì y là số nguyên )
=> \(3x^2+15⋮3x-2\)
\(\Rightarrow x\left(3x-2\right)+15+2x⋮3x-2\)
\(\Rightarrow2x+15⋮3x+2\)
\(\Rightarrow6x+45⋮3x+2\)
\(\Rightarrow2.\left(3x+2\right)+41⋮3x+2\)
\(\Rightarrow41⋮3x+2\)
\(\Rightarrow3x+2\in\left\{-41;-1;1;41\right\}\)
\(\Rightarrow3x\in\left\{-43;-3;-1;39\right\}\)
VÌ 3x chia hết cho 3
\(\Rightarrow3x\in\left\{-3;39\right\}\)
\(\Rightarrow x\in\left\{-1;13\right\}\)
+) với x = -1 => y = -6/5 ( loại )
+) với x = 13 => y = 174/37 ( loại )
Vậy không tìm được ( x ; y ) thỏa mãn bài
b,
Xét \(3^{n+2}-2^{n+2}+3^n-2^n=3^n.9-2^n.4+3^n-2^n=3^n.\left(9+1\right)-2^n.\left(4+1\right)=3^n.10-2^n.5\)
\(=3^n.10-2^{n-1}.2.5=3^n.10-2^{n-1}.10=10.\left(3^n-2^{n-1}\right)⋮10\)
\(\Rightarrow3^{n+2}-2^{n+2}+3^n-2^n⋮10\)
Vậy: \(3^{n+2}-2^{n+2}+3^n-2^n⋮10\)
\(2\times2^2\times2^3\times2^4\times...\times2^x=\left(2^3\right)^{12}\)
\(\Leftrightarrow2^{1+2+3+4+...+x}=2^{3\times12}\)
\(\Leftrightarrow2^{1+2+3+4+...+x}=2^{36}\)
\(\Leftrightarrow1+2+3+4+...+x=36\)
Ta có : Số số hạng = \(\frac{x-1}{1}+1=x\)
Tổng = \(\frac{\left(x+1\right)\times x}{2}=36\)
\(\Leftrightarrow\left(x+1\right)\times x=72\)
\(\Leftrightarrow x^2+x-72=0\)
\(\Leftrightarrow x^2-8x+9x-72=0\)
\(\Leftrightarrow x\times\left(x-8\right)+9\times\left(x-8\right)=0\)
\(\Leftrightarrow\left(x-8\right)\times\left(x+9\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-8=0\\x+9=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=8\\x=-9\end{cases}}\)
=> x = 8 ( do x là số nguyên dương )