Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tìm các số x,y nguyên dương thoả mãn điều kiện:
a)\(x^2—3x+y^2-6y+10=0\)
b)\(x^2-3y^2+2xy-2x-10y+4=0\)
Bài 1 :
Phương trình <=> 2x . x2 = ( 3y + 1 ) 2 + 15
Vì \(\hept{\begin{cases}3y+1\equiv1\left(mod3\right)\\15\equiv0\left(mod3\right)\end{cases}\Rightarrow\left(3y+1\right)^2+15\equiv1\left(mod3\right)}\)
\(\Rightarrow2^x.x^2\equiv1\left(mod3\right)\Rightarrow x^2\equiv1\left(mod3\right)\)
( Vì số chính phương chia 3 dư 0 hoặc 1 )
\(\Rightarrow2^x\equiv1\left(mod3\right)\Rightarrow x\equiv2k\left(k\inℕ\right)\)
Vậy \(2^{2k}.\left(2k\right)^2-\left(3y+1\right)^2=15\Leftrightarrow\left(2^k.2.k-3y-1\right).\left(2^k.2k+3y+1\right)=15\)
Vì y ,k \(\inℕ\)nên 2k . 2k + 3y + 1 > 2k .2k - 3y-1>0
Vậy ta có các trường hợp:
\(+\hept{\begin{cases}2k.2k-3y-1=1\\2k.2k+3y+1=15\end{cases}\Leftrightarrow\hept{\begin{cases}2k.2k=8\\3y+1=7\end{cases}\Rightarrow}k\notinℕ\left(L\right)}\)
\(+,\hept{\begin{cases}2k.2k-3y-1=3\\2k.2k+3y+1=5\end{cases}\Leftrightarrow\hept{\begin{cases}2k.2k=4\\3y+1=1\end{cases}\Rightarrow}\hept{\begin{cases}k=1\\y=0\end{cases}\left(TM\right)}}\)
Vậy ( x ; y ) =( 2 ; 0 )
Bài 3:
Giả sử \(5^p-2^p=a^m\) \(\left(a;m\inℕ,a,m\ge2\right)\)
Với \(p=2\Rightarrow a^m=21\left(l\right)\)
Với \(p=3\Rightarrow a^m=117\left(l\right)\)
Với \(p>3\)nên p lẻ, ta có
\(5^p-2^p=3\left(5^{p-1}+2.5^{p-2}+...+2^{p-1}\right)\Rightarrow5^p-2^p=3^k\left(1\right)\) \(\left(k\inℕ,k\ge2\right)\)
Mà \(5\equiv2\left(mod3\right)\Rightarrow5^x.2^{p-1-x}\equiv2^{p-1}\left(mod3\right),x=\overline{1,p-1}\)
\(\Rightarrow5^{p-1}+2.5^{p-2}+...+2^{p-1}\equiv p.2^{p-1}\left(mod3\right)\)
Vì p và \(2^{p-1}\)không chia hết cho 3 nên \(5^{p-1}+2.5^{p-2}+...+2^{p-1}⋮̸3\)
Do đó: \(5^p-2^p\ne3^k\), mâu thuẫn với (1). Suy ra giả sử là điều vô lý
\(\rightarrowĐPCM\)
2x2 + 3y2 = 5xy
=> 2x2 + 3y2 - 5xy = 0
=> 2 ( x2 - 2xy + y2 ) - xy + y2 = 0
=> 2 ( x - y ) 2 - y ( x - y ) = 0
=> ( x - y )[ 2( x - y ) - y ] = 0
=> ( x- y ) ( 2x - 2y - y ) = 0
=> ( x - y ) ( 2x - 3y ) = 0
TH1 : x - y = 0
=> x = y
Thay x = y vào \(\frac{x+2y}{3x-y}\)
=> \(\frac{x+2y}{3x-y}=\frac{y+2y}{3y-y}\)\(=\frac{3y}{2y}=\frac{3}{2}\)
TH2 : 2x - 3y = 0
=> 2x = 3y
=> \(\frac{x}{y}=\frac{3}{2}\)
=> x = \(\frac{3}{2}.y\)
Thay x = \(\frac{3}{2}.y\)vào \(\frac{x+2y}{3x-y}\)
=> \(\frac{x+2y}{3x-y}=\frac{\frac{3}{2}.y+2y}{3.\frac{3}{2}y-y}\)\(=\frac{\frac{7}{2}.y}{\frac{7}{2}.y}=1\)
\(x^6-2x^3y-x^4+y^2+7=0\)
\(\Leftrightarrow\left(x^6-2x^3y+y^2\right)-x^4+7=0\)
\(\Leftrightarrow\left(x^3-y\right)^2-\left(x^2\right)^2=-7\)
\(\Leftrightarrow\left(x^3-y+x^2\right)\left(x^3-y-x^2\right)=-7\)
Liệt kê ước 7 ra rồi lm đc
a) Ta có: A = x2 + y2 - xy - 2x - 2y + 9
2A = 2x2 + 2y2 - 2xy - 4x - 4y + 18
2A = (x2 + y2 - 2xy) + (x2 - 4x + 4) + (x2 - 4y + 4) + 10
2A = (x - y)2 + (x - 2)2 + (y - 2)2 + 10 \(\ge\)10 \(\forall\)x
=>A \(\ge\)5 \(\forall\)x
Dấu "=" xảy ra <=> \(\hept{\begin{cases}x-y=0\\x-2=0\\y-2=0\end{cases}}\) <=> \(\hept{\begin{cases}x=y\\x=2\\y=2\end{cases}}\) <=> x = y = 2
Vậy MinA = 5 <=> x = y = 2
b) Ta có: 3x2 + 3y2 + 4xy + 2x - 2y + 2 = 0
=> (2x2 + 2y2 + 4xy) + (x2 + 2x + 1) + (y2 - 2y + 1) = 0
=> 2(x + y)2 + (x + 1)2 + (y - 1)2 = 0
<=> \(\hept{\begin{cases}x+y=0\\x+1=0\\y-1=0\end{cases}}\)
<=> \(\hept{\begin{cases}x=-y\\x=-1\\y=1\end{cases}}\)
<=> \(\hept{\begin{cases}x=-1\\y=1\end{cases}}\)
\(2x^2+3y^2-5xy-x+3y-4=0\\ \)
Chả hiểu,mình mới học lớp 5 à