Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề bài đúng, trích trong đề thi HSG nên đừng nói là sai đề nha!!!
n2+5n+1=n(n+5)+1
Với n E N thì n+5>1
=> n2+5n+1 thì n=1
n=1 mình chắc luôn
bạn gặp trong violympic vòng 13 đúng ko
nhớ k nha(@_@)
n2+ 5n+ 1= n.n+ 5.n+ 1
= (5+ n). n+ 1 là số nguyên tố
Mà n nguyên dương nhỏ nhất nên (5+ n). n là hợp số
Suy ra (5+ n). n+ 1= 7
(5+ n). n= 6
=> n= 1
Ta phải tìm số nguyên dương n để A là số nguyên tố. Với:
\(A=\frac{n^2}{60-n}=\frac{60^2-\left(60^2-n^2\right)}{60-n}=\frac{-\left(60^2-n^2\right)}{60-n}+\frac{60^2}{60-n}=-\left(60+n\right)+\frac{3600}{60-n}..\)
Muốn Alà số nguyên tố, trước hêt A phải là số nguyên . Như vậy (60 - n) phải là ước nguyên dương của 3600, suy ra n < 60 và 3600 : (60 - n) phải lớn hơn 60 + n (Để A dương) đồng thời phải thỏa mãn A là số nguyên tố. Ta kiểm tra lần lượt các giá trị của n là ước của 60 (sao cho 60 - n là ước của 3600)
- Trường hợp 1: n = 30 Ta có A = -90 + 3600 : 30 = 30 không là số nguyên tố
- Trường hợp 2: n = 15 Ta có A = -75 + 3600 : 45 = 5 là số nguyên tố . Vậy n = 15 là giá trị thích hợp
- Trường hợp 3: n = 12 Ta có A = - 72 + 3600 : 48 = 3 là số nguyên tố . Vậy n = 12 là giá tị thích hợp.
- Trường hợp 4: n = 6 , n = 5, n = 3, n =2 thì A không phải là số nguyên, loại. Trường hợp n = 1 thì A âm, loại.
Trả lời: Có hai giá trị của n thỏa mãn yêu cầu bài ra : n = 12 và n = 15