Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình mới lớp 5 thôi nhưng mình sẽ cho bạn 1 câu trả lời
Số 3
Xin lỗi bạn nhé mong bạn thông cảm
Đặt \(n+6=a^2;n+1=b^2\)Ta có:
\(a^2-b^2=\left(n+6\right)-\left(n+1\right)\)
\(\Leftrightarrow\left(a+b\right)\left(a-b\right)=5\)
Ta có bảng:
a+b | 1 | 5 | -1 | -5 |
a-b | 5 | 1 | -5 | -1 |
a | 3 | 3 | -3 | -3 |
b | 2 | -2 | -2 | 2 |
a2=n+6 | 9 | 9 | 9 | 9 |
b2=n+1 | 4 | 4 | 4 | 4 |
n | 3 | 3 | 3 | 3 |
Thỏa mãn | Thỏa mãn | Thỏa mãn | Thỏa mãn |
Vậy n=3
đặt \(p^{2m}+q^{2m}=a^2\)
Xét p,q cùng lẻ thì \(p^{2m}\)chia 4 dư 1 ; \(q^{2m}\)chia 4 dư 1
\(\Rightarrow p^{2m}+q^{2m}\)chia 4 dư 2
\(\Rightarrow a^2\)chia 4 dư 2 ( vô lí vì SCP chia 4 ko thể dư 2 hoặc 3 )
\(\Rightarrow\)ít nhất 1 trong 2 số p,q có 1 số bằng 2
giả sử p = 2
\(\Rightarrow4^m=a^2-q^{2n}=\left(a-q^n\right)\left(a+q^n\right)\)
\(\Rightarrow\hept{\begin{cases}a-q^n=4^x\\a+q^n=4^y\end{cases}\Rightarrow2.q^n=4^y-4^x⋮4}\)
\(\Rightarrow q^n⋮2\)
\(\Rightarrow q⋮2\)
\(\Rightarrow q=2\)
Thay p = q = 2 vào, ta được :
\(4^m+4^n=a^2\)
giả sử \(m\ge n\)
Đặt \(m=n+z\)
Ta có : \(4^{n+z}+4^n=4^n\left(4^z+1\right)=a^2\)
vì \(4^n\)là số chính phương nên \(4^z+1\)là số chính phương
Dễ thấy \(4^z+1=\left(2^z\right)^2+1\)không là số chính phương nên suy ra phương trình vô nghiệm
Đáp số nè: m=2, n=1, p=2, q=3 và các hoán vị.
Nếu ai cần thì cứ nhắn tin vs mik nha.
Đặt n+6=a2 n+1=b2 (a,b dương a>b)
=> \(a^2-b^2=5\)=> \(\left(a+b\right)\left(a-b\right)=5\)=> \(\hept{\begin{cases}a+b=5\\a-b=1\end{cases}}\)=> \(\hept{\begin{cases}a=3\\b=2\end{cases}}\)=>\(n=3^2-6=2^2-1=3\)
Mình làm đại đó,ahihi :v