Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt: n4 + 2n3 + 2n2+ n + 7 = k2 (k \(\in\)N)
<=> (n2 + n)2 + (n2 + n) + 7 = k2
<=> 4(n2 + n)2 + 4(n2 + n) + 28 = 4k2
<=> 4k2 - (2n2 + 2n + 1)2 = 27
<=> (2k - 2n2 - 2n - 1)(2k + 2n2 + 2n + 1) = 27
Do 2k + 2n2 + 2n + 1 > 2k - 2n2 - 2n - 1
Lập bảng
2k + 2n2 + 2n + 1 | 27 | 9 | -1 | -3 |
2k - 2n2 - 2n - 1 | 1 | 3 | -27 | -9 |
(tự tính)
a, Với n = 1 thì \(n^3-n+2=1^3-1+2=2\)
=> Không phải là số chính phương
Với n = 2 thì \(n^3-n+2=2^3-2+2=8-2+2=8\)
=> Không phải là số chính phương
Với n > 2 thì \(n^3-n+2\)không phải là số chính phương vì \(\left[n-1\right]^2< n^3-\left[n-2\right]< n^2\)
b, Với n = 1 thì \(n^4-n+2=1^4-1+2=2\)
=> Không phải là số chính phương
Với n = 2 thì \(n^4-n+2=2^4-2+2=16=4^2\)=> Là số chính phương
Với n > 2 thì \(\left[n^2-1\right]^2< n^4-\left[n-2\right]< \left[n^2\right]^2\)
=> Không phải là số chính phương
Vậy n = 2
a)Ta có : \(12n^2-5n-25\)
\(=\left(4n+5\right)\left(3n-5\right)\)
Vì \(12n^2-5n-25\)là số nguyên tố
\(\Rightarrow\)Nó chỉ có 2 ước nguyên dương là 1 và chính nó
mà \(4n+5>3n-5\forall n\inℕ\)
\(\Rightarrow3n-5=1\)
\(\Rightarrow n=2\)
Thử lại : \(\left(2.4+5\right)\left(2.3-1\right)=13\)(là số nguyên tố)
Vậy \(n=2\)
b)Tương tự nhé cậu , ta tìm được \(n=0\)
Công nhận khó hiểu thật nhưng thông cảm nhé bởi vì mình biết mỗi cách này thôi nha :<
Đặt \(n^2-n+2=k^2\left(k\ge n\right)\)
\(\Rightarrow n^2-n-2=k^2-4\)
\(\Rightarrow\left(n+1\right)\left(n-2\right)=\left(k+2\right)\left(k-2\right)\)
\(\circledast k=-2\Leftrightarrow n=-1\left(tm\right)\)
\(\circledast k=2\Rightarrow n=2\left(tm\right)\)
\(\circledast k\ne\pm2\)
Do \(n-2\le k-2\Leftrightarrow n+1\ge k+2\)
Mà: \(n+1\le k+1\)
\(\Rightarrow k+2\le n+1\le k+1\) (vô lí)
Vậy n = -1; 2