K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 12 2015

với a=1 thì a2017+a2015+a=3 (t/m)

với a>1 thì a2017+a2015+1=(a2017-a)+a2015-a2+a2+a+1

ta có a2017-a =a(a2016-1)

        a2016-1=(a3)712-1 chia hết cho (a3-1)

        a3-1=(a-1)(a2+a+1) chia hết cho (a2+a+1)

=> a2016-1 chia hết cho (a2+a+1)

=> a2017-a chia hết cho (a2+a+1) (1)

a2015-a2=a2(a2013 -1) 

tương tự a2015-a2 chia hết cho a2+a+1

do a>1 ..............

tụ chứng minh tiếp nhé 

nhớ tick he 

26 tháng 12 2015

ai chả bít 1 . nhưng giả ra sao ...?

 

17 tháng 12 2015

a; Đặt A= \(a^{2017}+a^{2015}+1\)

\(=a^4\left(a^{2013}-1\right)+a^2\left(a^{2013}-1\right)+a^4+a^2+1\)=\(a^4\left(\left(a^3\right)^{671}-1\right)+a^2\left(\left(a^3\right)^{671}-1\right)+\left(a^2+a+1\right)\left(a^2-a+1\right)\)

\(\left(a^2+a+1\right)F\left(a\right)\) (trong đó F(a) là đa thức chứa a)

\(\Rightarrow A\) chia hết cho \(a^2+a+1\)

do \(a^2+a+1\) > 1 (dễ cm đc)

mà A là số nguyên tố

\(\Rightarrow A=a^2+a+1\)

hay \(a^{2017}+a^{2015}+1=a^2+a+1\)

\(\Leftrightarrow a\left(a\left(a^{2015}-1\right)+\left(a^{2014}-1\right)\right)=0\)

\(\Leftrightarrow a\left(a-1\right).G\left(a\right)=0\) ( bạn đặt nhân tử chung ra)

do a dương => a>0 => a-1=0=> a=1(t/m)

Kết Luận:...

chỗ nào bạn chưa hiểu cứ nói cho mình nha :3

 


 

5 tháng 10 2016

a = 1 tôi làm bài này rồi 

5 tháng 10 2016

MÌNH NGHĨ ĐÂY KHÔNG PHẢI BÀI LỚP 8 ĐÂU MÀ LÀ LỚP 6
a^2016+a^2017+1
a là số nguyên tố dương nên a không thể là số 0 
Vậy a từ 1 trở lên
Ta có thể đặt ra một số lũy thừa lên bao nhiêu vẫn là số nguyên tố 
Nó không thể là hơn 1 vì các số hơn 1 khi lên lũy thừa sẽ rất lớn và có cực nhiều khả năng nó có thể là hợp số
Vậy đó là 1
K NHA

5 tháng 8 2020

Ta có: \(a^3+b^3+3\text{a}b-1\)

\(\left(a+b\right)^3-3ab\left(a+b\right)+3ab-1\)

\(=\left[\left(a+b\right)^3-1\right]-3ab\left(a+b-1\right)\)

\(=\left(a+b-1\right)\left[\left(a+b\right)^2+\left(a+b\right)+1-3ab\right]\)

\(=\left(a+b-1\right)\left(a^2+b^2-ab+a+b+1\right)\)

Xét:  \(a^3+b^3+3\text{a}b-1\) là số nguyên tố với a; b là số nguyên dương 

+) Th1:  a + b - 1 = 1 và \(a^2+b^2-ab+a+b+1\) là số nguyên tố 

<=> a + b = 2 và  7 - 3ab là số nguyên tố 

Vì a; b nguyên dương  nên  a + b = 2 => a = b = 1 => 7 - 3ab = 7 - 3 = 4 không là số nguyên tố

=> Loại

+) Th2:  \(a^2+b^2-ab+a+b+1\) = 1 và a + b - 1 là số nguyên tố 

Ta có: \(a^2+b^2-ab+a+b+1=1\)

<=> \(a^2+\left(1-b\right)a+b^2+b=0\)

<=> \(a^2+2a\frac{\left(1-b\right)}{2}+\frac{\left(1-b\right)^2}{4}-\frac{1-2b+b^2}{4}+b^2+b=0\)

<=> \(\left(a+\frac{1-b}{2}\right)^2+\frac{3b^2+6b-1}{4}=0\)(1)

Với b nguyên dương ta có: \(b\ge1\Rightarrow\frac{3b^2+6b-1}{4}\ge2>0\)

=> (1) vô nghiệm 

=> Loại 

Vậy không tồn tại a; b nguyên dương

20 tháng 2 2018

tự túc là hạnh phúc

4 tháng 9 2023

a2+b2+c2=(a2+2ac+c2)-2ac+b2=(a+c)2-2b2+b2=(a+b+c)(a-b+c)
mà a2+b2+c2 là số nguyên tố và a+b+c>a-b+c nên a-b+c=1
=> a+c=b+1 => a2+2ac+c2=b2+2b+1 => a2+b2=2b+1=2a+2c+1+1
=>a2-2a+1+c2-2c+1=0 => (a-1)2+(c-1)2=0=>a=c=1=>b=1
Vậy (a,b,c) cần tìm là (1,1,1)