Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
TH1:Tích có chứa 1 thừa số nguyên âm:
Ta có:\(^{a^2-1>a^2-4>a^2-7>a^2-10}\)
\(\Rightarrow\hept{\begin{cases}a^2-7>0\\a^2-10< 0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}a^2>7\\a^2< 10\end{cases}}\)
\(\Rightarrow a^2=9\Rightarrow a=3\)
TH2: Tích có chứa 3 thừa số nguyên âm:
Ta có: \(a^2-1>a^2-4>a^2-7>a^2-10\)
\(\Rightarrow\hept{\begin{cases}a^2-1>0\\a^2-4< 0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}a^2>1\\a^2< 4\end{cases}}\)
\(\Rightarrow\)Không có giá trị nào của a trong TH2
Vậy a=3
Vì tích (a2 -1)(a2 - 4)(a2 - 7)(a2 - 10) là tích của 4 thừa số nhỏ hơn 0
=> Có 1 hoặc 3 thừa số nhỏ hơn 0
Mà a2 - 1 > a2 - 4 > a2 - 7 > a2 - 10.
+) TH1 : Có 1 thừa số nguyên âm
=> a2 - 7 > 0 => a2 > 7
=> a2 - 10 < 0 => a2 < 10
=> 7< a2< 10 => a2 = 9 => a \(\in\){ 3; -3}
+) TH2 : Có 3 thừa số nguyên âm
=> a2 - 1 > 0 => a2 > 1
=> a2 - 4 < 0 => a2 < 4
=> 1< a2 < 4 => a2 thuộc rỗng => a thuộc rỗng
Vậy a \(\in\){3 ; -3}
Goi 3 canh cua tam giac la a,b,c . Goi a bang x
ta co :
4a/2=12b/2=xc/2=S
suy ra a=2 ; b=6 ; 2S/x. Do x-y [bat dang thuc trong tam giac]
suy ra S/2-S/6<2S ma x<2S/3.Ma x thuoc Z
suy ra x=4,5
{CAU 2 } xet thay h 4 so la so am
suy ra co 1 hoac 3 so la so am trong h do
xet tung truong hop ta co:
+ co 1 so am
[x mu 2] - 10< [x mu 2] -7 suy ra [x mu 2] - 10 <0 < [x mu hai] -7
suy ra 7<[x mu2]<10 suy ra [x mu 2] = 9 suy ra x= 3 hoac -3
+co 3 so am 1 so duong
[x mu 2] - 4<[x mu 2 ] -1 <[ x mu 2] <4
suy ra khong co gia tri thoa man
Vay x=3;-3
Xét thấy tích của 4 số là một số âm
=> Có 1 hoặc 3 số là 1 số âm
Xét từng trường hợp, ta có:
+ Có một số âm:
x2 - 10 < x2 - 7 => x2 - 10 < 0 < x2 - 7
=> 7 < x2 < 10
=> x2 = 9
=> x = {3;-3}
+ Có 3 số là số âm, 1 số dương:
x2 - 4 < x2 - 1
=> 1 < x2 < 4
=> x không có giá trị thỏa mãn
Vậy x = -3 và x = 3
Lời giải:
Tích của bốn số \(x^2-10,x^2-7,x^2-4,x^2-1\) là số âm nên phải có một hoặc ba số âm . Ta có : \(x^2-10< x^2-7< x^2-4< x^2-1\). Xét hai trường hợp :
Trường hợp 1: Có một số âm,ba số dương:
\(x^2-10< 0< x^2-7\Rightarrow7< x^2< 10\Rightarrow x^2=9\left(x\inℤ\right)\Rightarrow x=\pm3\)
Trường hợp 2: Có ba số âm,một số dương
\(x^2-4< 0< x^2-1\Rightarrow1< x^2< 4\)
Do \(x\inℤ\)nên không tồn tại số x
Vậy x = \(\pm\)3.
Giải từng TH là ra, nhớ rằng âm nhân âm ra dương, âm nhân dương ra âm, để pt trên <0 thì cần 1 cặp dương, 1 cặp âm
tích của bốn số a2 - 10, a2 - 7, a2 - 4, a2 - 1 là số âm nên phải có 1 hoặc 3 số âm.
Ta có : a2 - 10 < a2 - 7 < a2 - 4 < a2 - 1.
Xét hai trường hợp :
+) có một số âm, ba số dương :
a2 - 10 < 0 < a2 - 7 \(\Rightarrow\)7 < a2 < 10 \(\Rightarrow\)a2 = 9 \(\Rightarrow\)a = \(\mp3\)
+) có ba số âm, một số dương :
a2 - 4 < 0 < a2 - 1 \(\Rightarrow\)1 < a2 < 4 \(\Rightarrow\)không có giá trị a nguyên nào thỏa mãn trường hợp trên
Vậy a = \(\mp3\)