Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(A=\dfrac{3n+1}{n+1}=\dfrac{3n+3-2}{n+1}=\dfrac{3\left(n+1\right)-2}{n+1}=3-\dfrac{2}{n+1}\)
Từ trên suy ra để A đạt giá trị nguyên thì \(\dfrac{2}{n+1}\) phải đạt giá trị nguyên hay \(n+1\inƯ\left(2\right)\)
\(\Rightarrow n+1\in\left\{-2;-1;1;2\right\}\)
\(\Rightarrow n\in\left\{-3;-2;0;1\right\}\)
Để \(\dfrac{3n+1}{n+1}\) đạt giá trị nguyên, thì:
\(3n+1⋮n+1\)
\(\Leftrightarrow3n+3-2⋮n+1\)
Hay \(3\left(n+1\right)-2⋮n+1\)
Vì \(3\left(n+1\right)⋮n+1\)
\(\Rightarrow2⋮n+1\)
\(\Rightarrow n+1\inƯ\left(2\right)\in\left\{\pm1;\pm2\right\}\)
Thế từng giá trị vào tổng \(n+1\), ta có:
\(\Rightarrow n\in\left\{-3;-2;0;1\right\}\)
Vậy n có 4 giá trị thỏa mãn
Chúc bn học tốt!!!
a)\(-\frac{21}{x}+\frac{18}{x}=\frac{-21+18}{x}=\frac{-3}{x}\in Z\)
=>-3 chia hết x
=>x thuộc Ư(-3)
=>x thuộc {1;-1;3;-3}
b)\(\frac{2x-5}{x+1}=\frac{2\left(x+1\right)-7}{x+1}=\frac{2\left(x+1\right)}{x+1}-\frac{7}{x+1}=2-\frac{7}{x+1}\in Z\)
=>7 chia hết x+1
=>x+1 thuộc Ư(7)
=>x+1 thuộc {1;-1;7;-7}
=>x thuộc {0;-2;6;-8}
c)\(\frac{3x+2}{x-1}-\frac{x-5}{x-1}=\frac{3x+2-\left(x-5\right)}{x-1}=\frac{2x+7}{x-1}=\frac{2\left(x-1\right)+9}{x-1}=\frac{2\left(x-1\right)}{x-1}+\frac{9}{x-1}\)\(=2+\frac{9}{x-1}\in Z\)
=>9 chia hết x-1
=>x-1 thuộc Ư(9)
=>....
Còn lại bạn tự làm típ nha khi nào ko làm đc thì nhắn vs mk :)
Bg
Ta có: A = \(\frac{2012}{9-x}\) (x \(\inℤ\); x \(\ne\)9) (x = 9 thì mẫu = 0, vô lý)
Để A lớn nhất thì 9 - x nhỏ nhất và 9 - x > 0
=> 9 - x = 1
=> x = 9 - 1
=> x = 8
=> A = \(\frac{2012}{9-x}=\frac{2012}{1}=2012\)
Vậy A đạt GTLN khi A = 2012 với x = 8
Ta có: |x-1| + |x-2| = |x-1| + |2-x|
Mà |x-1| + |x-2| \(\ge\) |x-1+x-2| hay |x-1| + |2-x| \(\ge\) |x-1+2-x|
\(\Rightarrow\) |x-1| + |2-x| \(\ge\) 1
Vậy A có GTNN là 1 khi x \(\in\) {1;2}
\(A=\left|x-1\right|+\left|x-2\right|=\left|x-1\right|+\left|2-x\right|\)
Áp dụng bất đẳng thức : \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\),dấu "=" xảy ra \(\Leftrightarrow ab\ge0\),ta có:
\(A\ge\left|\left(x-1\right)+\left(2-x\right)\right|=\left|x-1+2-x\right|=\left|1\right|=1\)
\(\Rightarrow A_{min}=1\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\left(x-1\right)\left(2-x\right)\ge0\Leftrightarrow1\le x\le2\)