K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 6 2019

Ta có 

A = \(\frac{n-3}{2n-1}-\frac{n-5}{2n-1}\)

\(\frac{(n-3)-(n-5)}{2n-1}\)

\(\frac{n-3-n+5}{2n-1}\)

\(\frac{n-n-3+5}{2n-1}\)

\(\frac{2}{2n-1}\)

Để \(\frac{2}{2n-1}\inℕ\)

=> \(2⋮2n-1\)

=> \(2n-1\inƯ\left(2\right)\)

=> \(2n-1\in\left\{1;2\right\}\)

Xét từng trường hợp ta có : 

+) 2n - 1 = 1

=> 2n = 1 + 1

=> 2n = 2

=> n = 2 : 2

=> n = 1 (chọn)

+) 2n - 1 = 2

=> 2n = 2 + 1

=> 2n = 3

=> n = 3 : 2

=> n = 1,5 (loại)

Vậy n = 1 

7 tháng 6 2019

\(A=\frac{n-3}{2n-1}-\frac{n-5}{2n-1}=\frac{\left(n-3\right)-\left(n-5\right)}{2n-1}=\frac{2}{2n-1}\)

Để \(A\in Z\)thì \(\frac{2}{2n-1}\in Z\)hay \(\left(2n-1\right)\inƯ\left(2\right)=\left\{-2;-1;1;2\right\}\)

2n - 1-2-112
n-1/2013/2

Mà \(n\in N\)

\(\Rightarrow n\in\left\{0;1;\frac{3}{2}\right\}\)

25 tháng 7 2016

gọi UCLN(2n+1,3n+1)=d

=>6n+2 chia hết cho d

6n+3 chia hết cho d

=>1 chia hết cho d

=>d=1

=>2n+1/3n+1 tối giản

25 tháng 7 2016

các bạn giải giúp mình câu b với 

24 tháng 2 2021

mình thua

18 tháng 4 2021

bo tay

10 tháng 5 2021

ta có A=\(\frac{n+1}{n-3}\)

để A nguyên thì \(n+1⋮n-3\Rightarrow n-3+4⋮̸n-3\)

vì \(n-3⋮n-3\Rightarrow4⋮n-3\Rightarrow\left(n-3\right)\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)

n-3-1-2-4124
n21-1457

vậy \(n\in\left\{2;1;-1;4;5;7\right\}\)


 

15 tháng 3 2020

Mọi người ghi cả cách giải nhé

3 tháng 3 2016

bạn có thể giải chi tiết ra được không