Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(f\left(x\right)=\left|x-1\right|+\left|4-x\right|+2\left(\left|x-2\right|+\left|4-x\right|\right)+\left|x-3\right|+\left|4-x\right|+2\left|x-3\right|\)
\(f\left(x\right)\ge\left|x-1+4-x\right|+2\left|x-2+4-x\right|+\left|x-3+4-x\right|+2\left|x-3\right|\)
\(f\left(x\right)\ge3+4+1+2\left|x-3\right|=8+2\left|x-3\right|\ge8\)
\(\Rightarrow f\left(x\right)_{min}=8\) khi \(x=3\)
a/ Để hàm số này là hàm bậc nhất thì
\(\hept{\begin{cases}\left(3n-1\right)\left(2m+3\right)=0\\4m+3\ne0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}n=\frac{1}{3}\\m=\frac{-3}{2}\end{cases}}\)
Các câu còn lại làm tương tự nhé bạn
a: \(A=\left(x^3\cdot\left(\dfrac{x+1+2\sqrt{x}+x+1-2\sqrt{x}}{x+1}\right)\right)^2-4x^6+x^4+3x^2-4\)
\(=4x^6-4x^6+x^4+3x^2-4\)
\(=x^4+3x^2-4\)
Khi x=2 thì \(A=16+3\cdot4-4=16+8=24\)
b: Khi \(A=8x^2-8\) thì \(x^4+3x^2-4=8x^2-8\)
\(\Leftrightarrow x^4-5x^2+4=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x+2\right)\left(x-2\right)=0\)
=>x=1 hoặc x=2
a ) Ta có : \(f\left(x\right)=4x^2-4x+3=4x^2-4x+1+2\)
\(=\left(2x-1\right)^2+2\ge2>0\forall x,x\in R\)
b ) Ta có : \(g\left(x\right)=2x-x^2-7=-x^2+2x-7\)
\(=-x^2+2x-1-8\)
\(=-\left(x^2-2x+1\right)-8\)
\(=-\left(x-1\right)^2\le-8< 0\forall x,x\in R\)