Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) (x - 1)5 = -243
=> (x - 1)5 = (-3)5
=> x - 1 = -3
=> x = -3 + 1
=> x = -2
b) \(\frac{x+2}{11}+\frac{x+2}{12}+\frac{x+2}{13}=\frac{x+2}{14}+\frac{x+2}{15}\)
=> (x + 2).(1/11 + 1/12 +1/3 - 1/4 - 1/15) = 0
=> x + 2 = 0
=> x = 0 - 2
=> x = 2
Bài 2:
a) \(\left|x+1\right|+\left|x+2\right|+\left|x+4\right|+\left|x+5\right|-6x=0\)
\(\Rightarrow\left|x+1\right|+\left|x+2\right|+\left|x+4\right|+\left|x+5\right|=6x\)
Ta có: \(\left|x+1\right|\ge0;\left|x+2\right|\ge0;\left|x+4\right|\ge0;\left|x+5\right|\ge0\)
\(\Rightarrow\left|x+1\right|+\left|x+2\right|+\left|x+4\right|+\left|x+5\right|\ge0\)
\(\Rightarrow6x\ge0\)
\(\Rightarrow x\ge0\)
\(\Rightarrow\left|x+1\right|+\left|x+2\right|+\left|x+4\right|+\left|x+5\right|=x+1+x+2+x+4+x+5=6x\)
\(\Rightarrow4x+12=6x\)
\(\Rightarrow2x=12\)
\(\Rightarrow x=6\)
Vậy x = 6
b) Giải:
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x-2}{2}=\frac{y-3}{3}=\frac{z-3}{4}=\frac{2y-6}{6}=\frac{3z-9}{12}=\frac{x-2-2y+6+3z-9}{2-6+12}=\frac{\left(x-2y+3z\right)-\left(2-6+9\right)}{8}\)
\(=\frac{14-5}{8}=\frac{9}{8}\)
+) \(\frac{x-2}{2}=\frac{9}{8}\Rightarrow x-2=\frac{9}{4}\Rightarrow x=\frac{17}{4}\)
+) \(\frac{y-3}{3}=\frac{9}{8}\Rightarrow y-3=\frac{27}{8}\Rightarrow y=\frac{51}{8}\)
+) \(\frac{z-3}{4}=\frac{9}{8}\Rightarrow z-3=\frac{9}{2}\Rightarrow z=\frac{15}{2}\)
Vậy ...
c) \(5^x+5^{x+1}+5^{x+2}=3875\)
\(\Rightarrow5^x+5^x.5+5^x.5^2=3875\)
\(\Rightarrow5^x.\left(1+5+5^2\right)=3875\)
\(\Rightarrow5^x.31=3875\)
\(\Rightarrow5^x=125\)
\(\Rightarrow5^x=5^3\)
\(\Rightarrow x=3\)
Vậy x = 3
a, \(\frac{x+2}{327}+1+\frac{x+3}{326}+1+\frac{x+4}{325}+1+\frac{x+5}{524}+1+\frac{x+329}{5}+\frac{20}{5}-4=0\)
\(\frac{x+329}{327}+\frac{x+329}{326}+\frac{x+329}{325}+\frac{x+329}{324}+\frac{x+329}{5}=0\)
=> x+329=0 => x= -329
b. tương tụ
c, x=0, x=4
a) \(\frac{2}{\left(x+2\right).\left(x+4\right)}+\frac{4}{\left(x+4\right).\left(x+8\right)}+\frac{6}{\left(x+8\right).\left(x+14\right)}=\frac{x}{\left(x+2\right).\left(x+14\right)}\)
\(\Rightarrow\frac{1}{x+2}-\frac{1}{x+4}+\frac{1}{x+4}-\frac{1}{x+8}+\frac{1}{x+8}-\frac{1}{x+14}=\frac{x}{\left(x+2\right).\left(x+14\right)}\)
\(\Rightarrow\frac{1}{x+2}-\frac{1}{x+14}=\frac{x}{\left(x+2\right).\left(x+14\right)}\)
\(\Rightarrow\frac{x+14}{\left(x+2\right).\left(x+14\right)}-\frac{x+2}{\left(x+2\right).\left(x+14\right)}=\frac{x}{\left(x+2\right).\left(x+14\right)}\)
\(\Rightarrow\frac{x+14-x+2}{\left(x+2\right).\left(x+14\right)}=\frac{x}{\left(x+2\right).\left(x+14\right)}\)
\(\Rightarrow\frac{16}{\left(x+2\right).\left(x+4\right)}=\frac{x}{\left(x+2\right).\left(x+14\right)}\)
\(\Rightarrow x=16\)
Vậy x = 16
\(b,\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}=\frac{x+1}{13}+\frac{x+1}{14}\)
\(\Leftrightarrow\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}-\frac{x+1}{13}-\frac{x+1}{14}=0\)
\(\Leftrightarrow\left(x+1\right)\left(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}-\frac{1}{14}\right)=0\)
\(\Leftrightarrow x+1=0\left(vì\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}-\frac{1}{14}\ne0\right)\)
\(\Leftrightarrow x=-1\)
\(\text{Vậy }x=-1\)
a) Ta có : \(\frac{x+5}{5}+\frac{x+5}{7}+\frac{x+5}{9}=\frac{x+5}{11}+\frac{x+5}{13}\)
\(\Rightarrow\frac{x+5}{5}+\frac{x+5}{7}+\frac{x+5}{9}-\left(\frac{x+5}{11}+\frac{x+5}{13}\right)=0\)
\(\Rightarrow\frac{x+5}{5}+\frac{x+5}{7}+\frac{x+5}{9}-\frac{x+5}{11}-\frac{x+5}{13}=0\)
\(\Rightarrow\left(x+5\right)\left(\frac{1}{5}+\frac{1}{7}+\frac{1}{9}-\frac{1}{11}-\frac{1}{13}\right)=0\)
Do \(\frac{1}{5}+\frac{1}{7}+\frac{1}{9}-\frac{1}{11}-\frac{1}{13}\ne0\)
\(\Rightarrow x+5=0\Rightarrow x=-5\)
Vậy x = -5
b) Ta có : \(\frac{x+2}{100}+\frac{x+3}{99}+\frac{x+4}{98}=\frac{x+5}{97}+\frac{x+6}{96}+\frac{x+7}{95}\)
\(\Rightarrow\frac{x+2}{100}+\frac{x+3}{99}+\frac{x+4}{98}+3=\frac{x+5}{97}+\frac{x+6}{96}+\frac{x+7}{95}+3\)
\(\Rightarrow\frac{x+2}{100}+1+\frac{x+3}{99}+1+\frac{x+4}{98}+1=\frac{x+5}{97}+1+\frac{x+6}{96}+1+\frac{x+7}{95}+1\)
\(\Rightarrow\frac{x+102}{100}+\frac{x+102}{99}+\frac{x+102}{98}=\frac{x+102}{97}+\frac{x+102}{96}+\frac{x+102}{95}\)
\(\Rightarrow\frac{x+102}{100}+\frac{x+102}{99}+\frac{x+102}{98}-\left(\frac{x+102}{97}+\frac{x+102}{96}+\frac{x+102}{95}\right)=0\)
\(\Rightarrow\frac{x+102}{100}+\frac{x+102}{99}+\frac{x+102}{98}-\frac{x+102}{97}-\frac{x+102}{96}-\frac{x+102}{95}\)
\(\Rightarrow\left(x+102\right)\left(\frac{1}{100}+\frac{1}{99}+\frac{1}{98}-\frac{1}{97}-\frac{1}{96}-\frac{1}{95}\right)=0\)
Do \(\frac{1}{100}+\frac{1}{99}+\frac{1}{98}-\frac{1}{97}-\frac{1}{96}-\frac{1}{95}\ne0\)
\(\Rightarrow x+102=0\Rightarrow x=-102\)
Vậy x = -102
c) Ta có : (x + 2) - (x + 3) = x + 2 - x - 3
= x - x + 2 - 3
= -1
mà (x + 2) - (x + 3) > 0 => không tồn tại x sao cho (x + 2) - (x + 3) > 0
d) Ta có : \(\left(x-5\right)\left(x+\frac{7}{3}\right)\ge0\)
\(\Rightarrow\orbr{\begin{cases}x\ge5\\x\ge\frac{-7}{3}\end{cases}}\)
\(\Rightarrow x\ge\frac{-7}{3}\)
Vậy \(x\ge\frac{-7}{3}\)
b. (x+1)(1/10+1/11+1/12-1/13-1/14)=0
x+1=0 (vì : 1/10+1/11+1/12-1/13-1/14>0)
x=-1
a) \(\dfrac{x+5}{5}+\dfrac{x+5}{7}+\dfrac{x+5}{9}=\dfrac{x+5}{11}+\dfrac{x+5}{13}\)
\(\Rightarrow\left(x+5\right)\left(\dfrac{1}{5}+\dfrac{1}{7}+\dfrac{1}{9}\right)=\left(x+5\right)\left(\dfrac{1}{11}+\dfrac{1}{13}\right)\)
\(\Rightarrow\dfrac{143}{315}\left(x+5\right)=\dfrac{24}{143}\left(x+5\right)\)
\(\Rightarrow\dfrac{143}{315}\left(x+5\right)-\dfrac{24}{143}\left(x+5\right)=0\)
\(\Rightarrow\left(x+5\right)\left(\dfrac{143}{315}-\dfrac{24}{143}\right)=0\)
\(\Rightarrow x+5=0\Rightarrow x=-5\)
b) \(\dfrac{x+2}{100}+\dfrac{x+3}{99}+\dfrac{x+4}{98}=\dfrac{x+5}{97}+\dfrac{x+6}{96}+\dfrac{x+7}{95}\)
\(\Rightarrow\)\(3+\dfrac{x+2}{100}+\dfrac{x+3}{99}+\dfrac{x+4}{98}=3+\dfrac{x+5}{97}+\dfrac{x+6}{96}+\dfrac{x+7}{95}\)
\(\Rightarrow\)\(1+\dfrac{x+2}{100}+1+\dfrac{x+3}{99}+1+\dfrac{x+4}{98}=1+\dfrac{x+5}{97}+1+\dfrac{x+6}{96}+1+\dfrac{x+7}{95}\)
\(\Rightarrow\)\(\dfrac{100}{100}+\dfrac{x+2}{100}+\dfrac{99}{99}+\dfrac{x+3}{99}+\dfrac{98}{98}+\dfrac{x+4}{98}=\dfrac{97}{97}+\dfrac{x+5}{97}+\dfrac{96}{96}+\dfrac{x+6}{96}+\dfrac{95}{95}+\dfrac{x+7}{95}\)\(\Rightarrow\)\(\dfrac{x+102}{100}+\dfrac{x+102}{99}+\dfrac{x+102}{98}=\dfrac{x+102}{97}+\dfrac{x+102}{96}+\dfrac{x+102}{95}\)
\(\Rightarrow\)\(\left(x+102\right)\left(\dfrac{1}{100}+\dfrac{1}{99}+\dfrac{1}{98}\right)=\left(x+102\right)\left(\dfrac{1}{97}+\dfrac{1}{96}+\dfrac{1}{95}\right)\)
\(\Rightarrow\)\(x+102=0\)
\(\Rightarrow x=-102\)
c) \(\left(x+2\right)-\left(x+3\right)>0\)
\(\Rightarrow x+2-x-3>0\Rightarrow-1>0\)
\(\Rightarrow x\in\varnothing\)
d) \(\left(x-5\right)\left(x+\dfrac{7}{3}\right)\ge0\)
TH1: \(\left\{{}\begin{matrix}x-5\ge0\\x+\dfrac{7}{3}\ge0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x\ge5\\x\ge\dfrac{-7}{3}\end{matrix}\right.\)
\(\Rightarrow x\ge\dfrac{-7}{3}\)
TH2: \(\left\{{}\begin{matrix}x-5\le0\\x+\dfrac{7}{3}\le0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x\le5\\x\le\dfrac{-7}{3}\end{matrix}\right.\)
\(\Rightarrow x\le5\)
TH3: \(\left[{}\begin{matrix}x-5=0\\x+\dfrac{7}{3}=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=5\\x=\dfrac{-7}{3}\end{matrix}\right.\)