Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Đặt \(\sqrt{2}+\sqrt{3}=a; \sqrt{3}-\sqrt{2}=b\Rightarrow \left\{\begin{matrix} a^2+b^2=10\\ ab=1\end{matrix}\right.\)
\(A=a^{2004}+b^{2004}=(a^{1002}+b^{1002})^2-2(ab)^{1002}\)
\(=[(a^2)^{501}+(b^2)^{501}]^2-2\)
Theo hằng đẳng thức: \((a^2)^{501}+(b^2)^{501}\vdots a^2+b^2\Leftrightarrow (a^2)^{501}+(b^2)^{501}\vdots 10\)
Do đó: \(=[(a^2)^{501}+(b^2)^{501}]^2\) có tận cùng là 0
\(\Rightarrow A=[(a^2)^{501}+(b^2)^{501}]^2-2\) có tận cùng là 8.
\(A=\left(5+2\sqrt{6}\right)^{1002}+\left(5-2\sqrt{6}\right)^{1002}\)
Đặt \(\left\{{}\begin{matrix}a=5+2\sqrt{6}\\b=5-2\sqrt{6}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a+b=10\\ab=1\end{matrix}\right.\)
Theo Viet đảo, a và b là nghiệm của \(x^2-10x+1=0\) \(\Rightarrow\left\{{}\begin{matrix}a^2=10a-1\\b^2=10b-1\end{matrix}\right.\)
Đặt \(S\left(n\right)=a^n+b^n\Rightarrow\left\{{}\begin{matrix}S\left(0\right)=1+1=2\\S\left(1\right)=a+b=10\end{matrix}\right.\)
\(S\left(n+2\right)=a^{n+2}+b^{n+2}=a^n.a^2+b^n.b^2\)
\(=a^n\left(10a-1\right)+b^n\left(10b-1\right)=10a^{n+1}+10b^{n+1}-\left(a^n+b^n\right)\)
\(=10S\left(n+1\right)-S_n\)
Do \(S\left(0\right);S\left(1\right)\) nguyên \(\Rightarrow S\left(2\right)\) nguyên \(\Rightarrow S\left(3\right)\) nguyên... \(\Rightarrow S\left(n\right)\) nguyên với mọi n
\(\Rightarrow S\left(n+2\right)+S\left(n\right)=10.S\left(n+1\right)\Rightarrow S\left(n+2\right)+S\left(n\right)⋮10\)
\(\Rightarrow\) Nếu \(S\left(k\right)\) có tận cùng là \(x\) thì \(S\left(k+2\right)\) có tận cùng là \(10-x\)
\(\Rightarrow S\left(k+4a\right)\) có tận cùng giống \(S\left(k\right)\)
Do \(S\left(0\right)=2\Rightarrow S\left(4k\right)\) có tận cùng bằng \(2\) với mọi k nguyên
\(\Rightarrow S\left(1000\right)\) có tận cùng bằng 2 \(\Rightarrow S\left(1002\right)\) có tận cùng bằng 8
\(\frac{\left(2+\sqrt{3}\right)^n-\left(2-\sqrt{3}\right)^n}{2\sqrt{3}}=\frac{A+B\sqrt{3}-A+B\sqrt{3}}{2\sqrt{3}}=B\)( A,B thuộc Z )
\(a,\left(4\sqrt{x}-\sqrt{2x}\right)\left(\sqrt{x}-\sqrt{2x}\right)=4x-4\sqrt{2}x-\sqrt{2}x+2x=6x-5\sqrt{2}x=\left(6-5\sqrt{2}\right)x\)
\(b,\left(2\sqrt{x}+\sqrt{y}\right)\left(3\sqrt{x}-2\sqrt{y}\right)=6x-4\sqrt{xy}+3\sqrt{xy}-2y=6x-4\sqrt{xy}-2y\)
a) \(ĐKXĐ:\hept{\begin{cases}x>0\\x\ne4\\x\ne9\end{cases}}\)
\(P=\left(\frac{\sqrt{x}-3}{2-\sqrt{x}}+\frac{\sqrt{x}+2}{3+\sqrt{x}}-\frac{9-x}{x+\sqrt{x}-6}\right):\left(1-\frac{3\sqrt{x}-9}{x-9}\right)\)
\(=\left[\frac{-\left(\sqrt{x}-3\right)}{\sqrt{x}-2}+\frac{\sqrt{x}+2}{\sqrt{x}+3}+\frac{x-9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\right]:\left[1-\frac{3\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\right]\)
\(=\left[\frac{-\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}+\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}+\frac{x-9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\right]:\left(1-\frac{3}{\sqrt{x}+3}\right)\)
\(=\left[\frac{-x+9+x-4+x-9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\right]:\left(\frac{\sqrt{x}+3-3}{\sqrt{x}+3}\right)\)
\(=\frac{x-4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}:\frac{\sqrt{x}}{\sqrt{x}+3}\)
\(=\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}.\frac{\sqrt{x}+3}{\sqrt{x}}=\frac{\sqrt{x}+2}{\sqrt{x}}\)
b) Ta có: \(P=\frac{\sqrt{x}+2}{\sqrt{x}}=1+\frac{2}{\sqrt{x}}\)
Vì \(x\inℤ\)\(\Rightarrow\)Để P nguyên thì \(\frac{2}{\sqrt{x}}\inℤ\)
\(\Rightarrow2⋮\sqrt{x}\)\(\Rightarrow\sqrt{x}\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)
Vì \(\sqrt{x}>0\)\(\Rightarrow\sqrt{x}\in\left\{1;2\right\}\)
\(\Rightarrow x\in\left\{1;4\right\}\)
So sánh với ĐKXĐ ta thấy \(x=1\)thỏa mãn
\(\Rightarrow P=\frac{\sqrt{1}+2}{\sqrt{1}}=\frac{1+2}{1}=3\)
Vậy \(x=1\)khi đó \(P=3\)
\(P=\left(\frac{\sqrt{x}-3}{2-\sqrt{x}}+\frac{\sqrt{x}+2}{3+\sqrt{x}}-\frac{9-x}{x+\sqrt{x}-6}\right)\div\left(1-\frac{3\sqrt{x}-9}{x-9}\right)\)
a) ĐK : \(\hept{\begin{cases}x\ge0\\x\ne4\\x\ne9\end{cases}}\)
\(=\left(\frac{3-\sqrt{x}}{\sqrt{x}-2}+\frac{\sqrt{x}+2}{\sqrt{x}+3}-\frac{9-x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\right)\div\left(1-\frac{3\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\right)\)
\(=\left(\frac{\left(3-\sqrt{x}\right)\left(x+\sqrt{3}\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}+\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}-\frac{9-x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\right)\div\left(1-\frac{3}{\sqrt{x}+3}\right)\)
\(=\left(\frac{9-x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}+\frac{x-4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}-\frac{9-x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\right)\div\left(\frac{\sqrt{x}+3}{\sqrt{x}+3}-\frac{3}{\sqrt{x}+3}\right)\)
\(=\left(\frac{9-x+x-4-9+x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\right)\div\left(\frac{\sqrt{x}}{\sqrt{x}+3}\right)\)
\(=\frac{x-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\times\frac{\sqrt{x}+3}{\sqrt{x}}\)
\(=\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{\sqrt{x}\left(\sqrt{x}-2\right)}=\frac{\sqrt{x}+2}{\sqrt{x}}\)
b) Ta có : \(\frac{\sqrt{x}+2}{\sqrt{x}}=1+\frac{2}{\sqrt{x}}\)
Để P nguyên => \(\frac{2}{\sqrt{x}}\)nguyên
=> \(2⋮\sqrt{x}\)
=> \(\sqrt{x}\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)
=> \(\sqrt{x}\in\left\{1;2\right\}\)( vì x ≥ 0 )
=> \(x\in\left\{1;4\right\}\Rightarrow x=1\)( vì x ≠ 4 )
Vậy với x = 1 thì P có giá trị nguyên
Giải:
a) \(\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)\)
\(=\left(\sqrt{x}\right)^3-1\)
Vậy ...
b) \(\left(\sqrt{x}+\sqrt{y}\right)\left(x-\sqrt{xy}+y\right)\)
\(=\left(\sqrt{x}\right)^3+\left(\sqrt{y}\right)^3\)
Vậy ...
c) \(\left(2\sqrt{x}+\sqrt{y}\right)\left(3\sqrt{x}-2\sqrt{y}\right)\)
\(=6x+3\sqrt{xy}-4\sqrt{xy}-2y\)
\(=6x-\sqrt{xy}-2y\)
Vậy ...
\(a.\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)=x\sqrt{x}-1\)
\(b.\left(\sqrt{x}+\sqrt{y}\right)\left(x-\sqrt{xy}+y\right)=x\sqrt{x}+y\sqrt{y}\)
\(c.\left(2\sqrt{x}+\sqrt{y}\right)\left(3\sqrt{x}-2\sqrt{y}\right)=6x-\sqrt{xy}-2y\)
a) ĐKXĐ : \(\hept{\begin{cases}x\ge0\\x\ne1\\x\ne9\end{cases}}\)
b) \(P=\left(\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3x-3}{x-9}\right):\left(\frac{2\sqrt{x}-2}{\sqrt{x}+3}\right)\)
\(=\frac{2\sqrt{x}\left(\sqrt{x}-3\right)+\sqrt{x}\left(\sqrt{x}+3\right)-3x+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}.\frac{\sqrt{x}+3}{2\left(\sqrt{x}-1\right)}=\frac{-3\left(\sqrt{x}-1\right)}{2\left(\sqrt{x}-3\right)\left(\sqrt{x}-1\right)}=-\frac{3}{2\left(\sqrt{x}-3\right)}\)c) Để P nguyên thì \(2\left(\sqrt{x}-3\right)\in\left\{-3;-1;1;3\right\}\)=> x thuộc rỗng.