Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
{u6=192u7=384⇔{u1.q5=192(1)u1.q6=384(2){u6=192u7=384⇔{u1.q5=192(1)u1.q6=384(2)
Lấy (2) chia (1): q = 2 thế vào (1):
(1) ⇔ u1.25 = 192 ⇔ u1 = 6
Vậy u1 = 6 và q = 2
b) Ta có:
{u4−u2=72u5−u3=144⇔{u1.q3−u1.q=72u1.q4−u1.q2=144⇔{u1.q(q2−1)=72(1)u1.q2(q2−1)=144(2){u4−u2=72u5−u3=144⇔{u1.q3−u1.q=72u1.q4−u1.q2=144⇔{u1.q(q2−1)=72(1)u1.q2(q2−1)=144(2)
Lấy 2 chia 1: q = 2 thế vào (1)
(1) ⇔2u1(4 – 1) = 72 ⇔ u1 = 12
Vậy u1 = 12 và q = 2
c) Ta có:
{u2+u5−u4=10u3+u6−u5=20⇔{u1.q+u1.q4−u1.q3=10u1.q2(q2−1)=144(2)⇔{u1q(1+q3−q2)=10(1)u1q(1+q3−q2)=20(2){u2+u5−u4=10u3+u6−u5=20⇔{u1.q+u1.q4−u1.q3=10u1.q2(q2−1)=144(2)⇔{u1q(1+q3−q2)=10(1)u1q(1+q3−q2)=20(2)
Lấy (2) chia (1): q = 2 thế vào (1)
(1) ⇔ 2u1 (1 + 8 – 4) = 10 ⇔ u1 = 1
Vậy u1 = 1 và q = 2
a:
ĐKXĐ: \(q\notin\left\{0;1;-1\right\}\)
\(HPT\Leftrightarrow\left\{{}\begin{matrix}u1\cdot q^4-u1=15\\u1\cdot q^3-u1\cdot q=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{q^4-1}{q^3-q}=\dfrac{15}{6}=\dfrac{5}{2}\\u1\left(q^4-1\right)=15\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}2q^4-2=5q^3-5q\\u1\left(q^4-1\right)=15\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2q^4-5q^3+5q-2=0\\u1\left(q^4-1\right)=15\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\left(q-2\right)\left(q-1\right)\left(q+1\right)\left(2q-1\right)=0\\u1\left(q^4-1\right)=15\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\left[{}\begin{matrix}q=2\\q=\dfrac{1}{2}\end{matrix}\right.\\u1\left(q^4-1\right)=15\end{matrix}\right.\)
TH1: q=2
=>\(u1=\dfrac{15}{2^4-1}=\dfrac{15}{15}=1\)
TH2: q=1/2
=>\(u1=\dfrac{15}{\dfrac{1}{16}-1}=15:\dfrac{-15}{16}=-16\)
b:
\(HPT\Leftrightarrow\left\{{}\begin{matrix}u1-u1\cdot q^2+u1\cdot q^4=65\\u1+u1\cdot q^6=325\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{q^4-q^2+1}{q^6+1}=\dfrac{1}{5}\\u1\left(1+q^6\right)=325\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\dfrac{1}{q^2+1}=\dfrac{1}{5}\\u1\left(q^6+1\right)=325\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}q^2=4\\u1\left(q^6+1\right)=325\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}q\in\left\{2;-2\right\}\\u1\left(q^6+1\right)=325\end{matrix}\right.\Leftrightarrow u1=\dfrac{325}{65}=5\)
c: \(HPT\Leftrightarrow\left\{{}\begin{matrix}u1\cdot q^3+u1\cdot q^5=-540\\u1\cdot q+u1\cdot q^3=-60\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\dfrac{q^5+q^3}{q^3+q}=9\\u1\left(q+q^3\right)=-60\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}q^2=9\\u1\left(q+q^3\right)=-60\end{matrix}\right.\)
TH1: q=3
\(u1=-\dfrac{60}{3+3^3}=-\dfrac{60}{30}=-2\)
TH2: q=-3
=>\(u1=-\dfrac{60}{-3-27}=\dfrac{60}{30}=2\)
a) \(\left\{{}\begin{matrix}u_5=96\\u_7=384\end{matrix}\right.\)
\(u^2_6=u_5.u_7=96.384=36864\)
\(\Leftrightarrow u_6=192\)
\(q=\dfrac{u_7}{u_6}=\dfrac{384}{192}=2\)
\(u_5=u_1.q^4\)
\(\Leftrightarrow u_1=\dfrac{u_5}{q^4}=\dfrac{96}{2^4}=6\)
b) \(\left\{{}\begin{matrix}u_4-u_2=25\\u_3-u_1=50\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}u_1.q^3-u_1.q=25\\u_1.q^2-u_1=50\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}u_1.q\left(q^2-1\right)=25\left(1\right)\\u_1.\left(q^2-1\right)=50\left(2\right)\end{matrix}\right.\)
\(\left(1\right):\left(2\right)\Leftrightarrow q=\dfrac{25}{50}=\dfrac{1}{2}\)
\(\left(2\right)\Leftrightarrow u_1=\dfrac{50}{q^2-1}=\dfrac{50}{\dfrac{1}{4}-1}=-\dfrac{200}{3}\)
Gọi số hạng đầu và công sai của cấp số cộng lần lượt là: u1 và d.
Ta có:
{u1+2u5=0S4=14⇔{u1+2.(u1+4d)=0[2u1+3d].42=14⇔{3u1+8d=02u1+3d=7⇔{u1=8d=−3.
b) Gọi số hạng đầu và công sai của cấp số cộng làn lượt là \(u_1\) d. Ta có:
\(\left\{{}\begin{matrix}u_1+3d=10\\u_1+6d=19\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}u_1=1\\d=3\end{matrix}\right.\).
c) Gọi số hạng đầu và công sai của cấp số cộng lần lượt là \(u_1\) và d. Ta có:
\(\left\{{}\begin{matrix}u_1+u_1+4d-u_1-2d=10\\u_1+u_1+5d=7\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}u_1+2d=10\\2u_1+5d=7\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}u_1=36\\d=-13\end{matrix}\right.\).
d) Gọi số hạng đầu và công sai của cấp số cộng lần lượt là \(u_1\) và d. Ta có:
\(\left\{{}\begin{matrix}u_1+6d-\left(u_1+2d\right)=8\\\left(u_1+d\right)\left(u_1+6d\right)=75\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}4d=8\\\left(u_1+d\right)\left(u_1+6d\right)=75\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}d=2\\\left(u_1+2\right)\left(u_1+12\right)=75\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}d=2\\u^2_1+14u_1-51=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}d=\\\left[{}\begin{matrix}u_1=3\\u_1=-17\end{matrix}\right.\end{matrix}\right.\)
Vậy có hai cấp số cộng thỏa mãn là: \(\left\{{}\begin{matrix}d=2\\u_1=3\end{matrix}\right.\) và \(\left\{{}\begin{matrix}d=2\\u_1=-17\end{matrix}\right.\).
a) \(\left\{{}\begin{matrix}u_2-u_3+u_5=10\\u_4+u_6=26\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}u_1+d-u_1-2d+u_1+4d=10\\u_1+3d+u_1+5d=26\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}u_1+3d=10\\2u_1+8d=26\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}u_1=1\\d=3\end{matrix}\right.\)
b)\(\left\{{}\begin{matrix}u_2-u_6+u_4=-7\\u_8-2u_7=2u_4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}u_1+d-u_1-5d+u_1+3d=-7\\u_1+7d-2\left(u_1+6d\right)=2\left(u_1+3d\right)\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}u_1-d=-7\\-3u_1-11d=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}u_1=\dfrac{-11}{2}\\d=\dfrac{3}{2}\end{matrix}\right.\)
c)\(\left\{{}\begin{matrix}u_7-u_3=8\\u_2.u_7=75\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}u_1+6d-u_1-2d=8\\\left(u_1+d\right)\left(u_1+6d\right)=75\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4d=8\\\left(u_1+d\right)\left(u_1+6d\right)=75\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}d=2\\\left(u_1+2\right)\left(u_1+12\right)=75\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}d=2\\u_1^2+14u_1+24=75\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}d=2\\\left[{}\begin{matrix}u_1=3\\u_1=-17\end{matrix}\right.\end{matrix}\right.\)
a.
\(\left\{{}\begin{matrix}u_1+\left(u_1+4d\right)-\left(u_1+2d\right)=10\\\left(u_1+d\right)+\left(u_1+4d\right)=7\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}u_1+2d=10\\2u_1+5d=7\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}u_1=36\\d=-13\end{matrix}\right.\)
b.
\(\left\{{}\begin{matrix}u_1+d+u_1+3d=5\\u_1^2+\left(u_1+4d\right)^2=25\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}4d=5-2u_1\\u_1^2+\left(u_1+4d\right)^2=25\end{matrix}\right.\)
\(\Rightarrow u_1^2+\left(u_1+5-2u_1\right)^2=25\)
\(\Rightarrow u_1^2+u_1^2-10u_1+25=25\)
\(\Rightarrow\left[{}\begin{matrix}u_1=0\Rightarrow d=\dfrac{5}{4}\\u_1=5\Rightarrow d=-\dfrac{5}{4}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}u_1+u_1q^2+u_1q^4=-21\\u_1q+u_1q^3=10\end{matrix}\right.\)
Chia vế cho vế:
\(\frac{1+q^2+q^4}{q+q^3}=-\frac{21}{10}\)
\(\Leftrightarrow10q^4+21q^3+10q^2+21q+10=0\)
Nhận thấy \(q=0\) không phải là nghiệm, chia 2 vế cho \(q^2\):
\(10\left(q^2+\frac{1}{q^2}\right)+21\left(q+\frac{1}{q}\right)+10=0\)
Đặt \(q+\frac{1}{q}=x\) với \(\left|x\right|\ge2\Rightarrow q^2+\frac{1}{q^2}=x^2-2\)
\(\Rightarrow10\left(x^2-2\right)+21x+10=0\)
\(\Leftrightarrow10x^2+21x-10=0\) \(\Rightarrow\left[{}\begin{matrix}x=\frac{2}{5}\left(l\right)\\x=-\frac{5}{2}\end{matrix}\right.\)
\(\Rightarrow q+\frac{1}{q}=-\frac{5}{2}\Leftrightarrow2q^2+5q+2=0\Rightarrow\left[{}\begin{matrix}q=-2\\q=-\frac{1}{2}\end{matrix}\right.\)
- Với \(q=-2\Rightarrow u_1=-1\)
- Với \(q=-\frac{1}{2}\Rightarrow u_1=-16\)
Gọi số hạng đầu và công bội của cấp số nhân là: \(u_1;q\).
a) Theo tính chất của cấp số nhân ta có:
\(\left\{{}\begin{matrix}u_1q^4-u_1=15\\u_1q^3-u_1q=6\end{matrix}\right.\)\(\Rightarrow\dfrac{u_1\left(q^4-1\right)}{u_1\left(q^3-q\right)}=\dfrac{15}{6}\)\(\Leftrightarrow\dfrac{\left(q^2-1\right)\left(q^2+1\right)}{q\left(q^2-1\right)}=\dfrac{15}{6}\)\(\Leftrightarrow\dfrac{q^2+1}{q}=\dfrac{15}{6}\)
\(\Leftrightarrow6\left(q^2+1\right)=15q\)\(\Leftrightarrow6q^2-15q+6=0\)\(\Leftrightarrow\left[{}\begin{matrix}q=2\\q=\dfrac{1}{2}\end{matrix}\right.\).
Với \(q=2\).
Suy ra: \(u_1\left(q^4-q\right)=15\Rightarrow u_1=\dfrac{15}{q^4-q}=\dfrac{15}{14}\).
Với \(q=\dfrac{1}{2}\)
Suy ra \(u_1=\dfrac{15}{q^4-q}=\dfrac{-240}{7}\).