K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 1 2020

Mình trả lời vào câu hỏi trước của bạn rồi đó !

7 tháng 2 2017

 cau 1 minh ra 6

8 tháng 2 2017

Cau 1 ra d­u 6 . minh hoc rui day la bai dong du

30 tháng 1 2020

Bài giải

Ta có: 1010 + 10100 + 101000 +...+ 1010000000000

= (1010 + 10100) + (101000 + 1010000) +...+

(101000000000 + 1010000000000)

= 1010(1010 + 1) + 101000(1010 + 1) +...+

101000000000(1010 + 1)

= (1010 + 1)(1010 + 101000 +...+ 101000000000)

= 1000000001("viết lại")

Vì 1000000001 chia hết cho 7

Nên 1000000001("viết lại") chia hết cho 7

Suy ra 1000000001("viết lại") chia 7 dư 0

cảm ơn bạn

7 tháng 2 2017

Bài 1:

Theo đề bài ta có:

\(a=4q_1+3=9q_2+5\) (\(q_1\)\(q_2\) là thương trong hai phép chia)

\(\Rightarrow\left[\begin{matrix}a+13=4q_1+3+13=4\left(q_1+4\right)\left(1\right)\\a+13=9q_2+5+13=9\left(q_2+2\right)\left(2\right)\end{matrix}\right.\)

Từ (1) và (2) suy ra: \(a+13=BC\left(4;9\right)\)

\(Ư\left(4;9\right)=1\Rightarrow a+13=BC\left(4;9\right)=4.9=36\)

\(\Rightarrow a+13=36k\left(k\ne0\right)\)

\(\Rightarrow a=36k-13=36\left(k-1\right)+23\)

Vậy \(a\div36\)\(23\)

7 tháng 2 2017

Câu 1

Theo bài ra ta có:

\(a=4q_1+3=9q_2+5\)(q1 và q2 là thương của 2 phép chia)

\(\Rightarrow a+13=4q_1+3+13=4\left(q_1+4\right)\left(1\right)\)

\(a+13=9q_2+5+13=9.\left(q_2+2\right)\left(2\right)\)

Từ (1) và (2) ta có \(a+13\) là bội của 4 và 9 mà ƯC(4;9)=1

nên a là bội của 4.9=36

\(\Rightarrow a+13=36k\left(k\in N\right)\)

\(\Rightarrow a=36k-13\)

\(\Rightarrow a=36.\left(k-1\right)+23\)

Vậy a chia 36 dư 23

15 tháng 3 2018

1, Dễ thấy : \(5^2=25\equiv1\left(mod12\right)\)                                         \(7^2=49\equiv1\left(mod12\right)\)

             \(\rightarrow\left(5^2\right)^{35}\equiv1^{35}\left(mod12\right)\)                                     \(\rightarrow\left(7^2\right)^{35}\equiv1^{35}\left(mod12\right)\)

           \(\rightarrow5^{70}\equiv1\left(mod12\right)\)                                                 \(\rightarrow7^{70}\equiv1\left(mod12\right)\)

Vậy \(5^{70}:12\left(dư1\right)\) và \(7^{70}:12\left(dư1\right)\)Vậy \(\left(5^{70}+7^{70}\right):12\left(dư2\right)\)

Bài 2 :  Ta có : 3012 = 13.231 + 9

Do đó: 3012 đồng dư với 9 (mod13)

=> \(3012^3\)đồng dư với \(9^3\left(mod13\right)\). Mà \(9^3=729\)đồng dư với 1 (mod13)

=> \(3012^3\)đồng dư với 1 (mod13)

Hay \(3012^{93}\)đồng dư với 1 (mod13)

=> \(3012^{93}-1\)đồng dư với 0 (mod13)

Hay \(3012^{93}-1⋮13\left(đpcm\right)\)