Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
33 = 27 = 1 (mod 13)
=> (33)667 = 1667 (mod 13)
=> 32001 = 1 (mod 13)
=> 32001.32 = 1.32 (mod 13)
=> 32003 = 9 (mod 13)
bài làm
33 = 27 = 1 (mod 13)
=> (33)667 = 1667 (mod 13)
=> 32001 = 1 (mod 13)
=> 32001.32 = 1.32 (mod 13)
=> 32003 = 9 (mod 13)
vậy ....................
hok tốt
Số số hạng của C là : (2003 - 1) : 1 + 1 = 2003
Nếu nhóm 3 số hạng vào 1 nhóm thì số nhóm là : 2003 : 3 = 667 (nhóm) dư 2 số hạng
Ta có :
\(C=\left(2+2^2\right)+\left(2^3+2^4+2^5\right)+...+\left(2^{2001}+2^{2002}+2^{2003}\right)\)
\(C=6+\left[2^3.\left(1+2+2^2\right)+...+2^{2001}.\left(1+2+2^2\right)\right]\)
\(C=6+\left[2^3.7+...+2^{2001}.7\right]\)
\(C=6+7.\left(2^3+...+2^{2001}\right)\)
\(\Rightarrow C:7\)dư 6
Lời giải:
$S=1+4+(4^2+4^3+4^4)+(4^5+4^6+4^7)+....+(4^{98}+4^{99}+4^{100})$
$=5+4^2(1+4+4^2)+4^5(1+4+4^2)+...+4^{98}(1+4+4^2)$
$=5+(1+4+4^2)(4^2+4^5+....+4^{98})$
$=5+21(4^2+4^5+...+4^{98})$
$\Rightarrow S$ chia $21$ dư $5$