K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 3 2017

121287370050 nha

11 tháng 7 2018

\(a,\)Biết \(B=\frac{100.101}{2}=50.101\)

\(A=1^3+2^3+3^3+...+99^3+100^3\)

Xét \(A=\left(1^3+100^3\right)+\left(2^3+99^3\right)+...+\left(49^3+52^3\right)+\left(50^3+51^3\right)\)

\(\Rightarrow A=101.\left(1+100+100^2\right)+101.\left(2^2+2.99+99^2\right)+...+101\left(50^2+50.51+51^2\right)\)

\(\Rightarrow A=101\left(1+100+100^2+2^2+2.99+99^2+...+50^2+50.51+51^2\right)⋮101\)

Xét\(A=\left(1^3+99^3\right)+\left(2^3+98^3\right)+...+\left(49^3+51^3\right)+50^3\)

\(\Rightarrow A=100\left(1^2+1.99+99^2\right)+100\left(2^2+2.98+98^2\right)+...+100\left(49^2+49.51+51^2\right)+100.50.25⋮50\)

Vậy \(A⋮101.50=5050=B\)

Làm tương tự với câu b

24 tháng 8 2018

1.

Đặt \(1995^{1995}=a=a_1+a_2+a_3+...+a_n\)

Gọi \(S=a_1^3+a_2^3+...+a_n^3=a_1^3+a_2^3+...+a_n^3-a+a\)

\(S=\left(a_1^3-a_1\right)+\left(a_2^3-a_2\right)+...+\left(a_n^3-a_n\right)+a\)

Vì mỗi dấu ngoặc đều chia hết cho 6 do là tích 3 số tự nhiên liên tiếp

\(\Rightarrow S\) chia 6 dư a

\(1995\equiv3\left(mod6\right)\Rightarrow1995^{1995}\equiv3\left(mod6\right)\)

Vậy S chia 6 dư 3

2.

\(2^{100}=\left(2^{10}\right)^{10}=1024^{10}=\left(B\left(25\right)-1\right)^{10}=B\left(25\right)+1\)

Vì 2100 chẵn nên 3 chữ số tận cùng của nó chẵn nên có thể là 126; 376; 626; 876

Lại có 2100 chia hết cho 8 => ba chữ số tận cùng chi hết cho 8

=> Ba CTSC là 376

3.

\(22^{22}+55^{55}=\left(BS7+1\right)^{22}+\left(BS7-1\right)^{55}=BS7+1+BS7-1=BS7⋮7\)

\(3^{1993}=3\cdot\left(3^3\right)^{664}=3\cdot\left(BS7-1\right)^{664}=3\left(BS7+1\right)=BS7+3\) nên chia 7 dư 3

\(1992^{1993}+1994^{1995}=\left(BS7-3\right)^{1993}+\left(BS7-1\right)^{1995}=BS7-3^{1993}+BS7-1=BS7-\left(BS7+3\right)+BS7-1=BS7-4\) chia 7 dư 3

\(3^{2^{1930}}=3^{2860}=3\cdot\left(3^3\right)^{953}=3\cdot\left(BS7-1\right)^{953}=3\left(BS7-1\right)=BS7-3\) chia 7 dư 4

4.

\(2^{1994}=2^2\cdot\left(2^3\right)^{664}=4\left(BS7+1\right)^{664}=4\left(BS7+1\right)=BS7+4\) chia 7 dư 4

\(3^{1998}+5^{1998}=\left(3^3\right)^{666}+\left(5^2\right)^{999}=\left(BS7-1\right)^{666}+\left(BS7-1\right)^{999}=BS7+1+BS7-1=BS7⋮7\)

\(A=1^3+2^3+3^3+...+99^3=\left(1+2+...+99\right)^2=B^2⋮B\)

CM bằng quy nạp (có trên mạng)

2 tháng 10 2020

bạn ơi cho mình hỏi là vì sao 1995 chia 6 dư 3 thì 1995^1995 chia 6 cũng dư 3 vậy ạ? nếu đc thì bạn có thể chứng minh giúp mình t/c này với ạ

5 tháng 8 2018

c)

Gọi đa thức \(ax^3+bx^2+c\)\(f\left(x\right)\).

Theo bài ra \(f\left(x\right)⋮x+2\) , ta có phương trình:

\(f\left(-2\right)=-8a+4b+c=0\)(1)

Gọi \(Q\left(x\right)\) là thương của đa thức \(f\left(x\right)\) khi chia \(x^2-1\) được dư là \(x+5\). Ta có:

\(f\left(x\right)=ax^3+bx^2+cx=\left(x^2-1\right).Q\left(x\right)+x+5\)(*)

Nghiệm của \(x^2-1\)\(1\)\(-1\). Thay nghiệm x=1 và x=-1 vào (*), ta có :

\(\left\{{}\begin{matrix}a.\left(-1\right)^3+b\left(-1\right)^2+c=0.Q\left(x\right)+\left(-1\right)+5=4\\a.1^3+b.1^2+c=0.Q\left(x\right)+1+5=6\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-a+b+c=4\left(2\right)\\a+b+c=6\left(3\right)\end{matrix}\right.\)

Từ (1), (2) và (3), ta có HPT:

\(\left\{{}\begin{matrix}-8a+4b+c=0\\-a+b+c=4\\a+b+c=6\end{matrix}\right.\)

Giải HPT ta được:

\(\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=1\\c=4\end{matrix}\right.\)

Vậy a=1;b=1 và c=4

5 tháng 8 2018

b)

Gọi đa thức \(x^3+ax+b\)\(f\left(x\right)\)

Gọi \(P\left(x\right)\) là thương khi chia đa thức \(f\left(x\right)\) cho \(x+1\) được dư 7.

Gọi \(Q\left(x\right)\) là thương khi chia đa thức \(f\left(x\right)\) cho \(x-3\) dư -5.

Theo bài ra ta có PT:

\(\left\{{}\begin{matrix}x^3+ax+b=\left(x+1\right).P\left(x\right)+7\\x^3+ax+b=\left(x-3\right).Q\left(x\right)+\left(-5\right)\end{matrix}\right.\)(*)

Nghiệm của x+1 là -1 và nghiệm của x-3 là 3. Thay nghiệm x=-1 và x=3 vào (*) ta được:

\(\left\{{}\begin{matrix}\left(-1\right)^3+a\left(-1\right)+b=0.P\left(x\right)+7=7\\3^3+a3+b=0.Q\left(x\right)-5=-5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-1-a+b=-7\\27+3a+b=-5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-a+b=8\\3a+b=-32\end{matrix}\right.\)

Giải HPT ta được:

\(\Leftrightarrow\left\{{}\begin{matrix}a=-10\\b=-2\end{matrix}\right.\)

Vậy a=-10, b=-2