Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt A=2+22+23+...+298+299+2100
=>A=(2+22+23)+...+(298+299+2100)
=>A=2.(1+2+22)+...+298.(1+2+22)
=>A=2.7+...+298.7
=>A=7.(2+...+298)
=>A chia hết cho 7
=>A chia 7 dư 0
chia thành từng bộ ba thì tổng của 99 số hạng sau chia hết cho 7
A = 2 + (2^2+2^3+2^4) +..+ (2^98+2^99+2^100)
A = 2 + 7.2^2 +..+ 7.2^98 => A chia 7 dư 2
chia thành từng bộ ba thì tổng của 99 số hạng sau chia hết cho 7
A = 2 + (2^2+2^3+2^4) +..+ (2^98+2^99+2^100)
A = 2 + 7.2^2 +..+ 7.2^98 => A chia 7 dư 2
A=(2^1+2^2)+(2^3+2^4)+.....+(2^99+2^100)
A=(2+2^2)+2^2(2+2^2)+.....+2^98(2+2^2)
A=6+2^2.6+....+2^98.6
A=6+2^2.6+......+2^98.3.2
Vậy A chia hêt cho 3
1. 5x+27 là bội của x+1
=> 5x+27 chia hết cho x+1
=> 5(x+1)+22 chia hết cho x+1
Mà 5(x+1) chia hết cho x+1
=> 22 chia hết cho x+1
=> x+1 thuộc Ư(22)
Tiếp theo bạn tự làm nhé
mk chỉ làm đc câu a) bài 1 thôi nha !
Bài 1 .
Ta có :
a) A = (2+22)+(23+24)+...+299+2100
=> A = (1+2).21+(1+2).23+...+(1+2).299
=> A = 3.(21+23+...+299) \(⋮\)3
=> A \(⋮\)3
chia thành từng bộ ba thì tổng của 99 số hạng sau chia hết cho 7
2 + (2\(^2\)+2\(^3\)+2\(^4\)) +..+ (2\(^{98}\)+2\(^{99}\)+2\(^{100}\))
2 + 7.2\(^2\) +..+ 7.2\(^{98}\) => A chia 7 dư 2