Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình chỉ biết làm ý a thôi :)
S = 21 + 22 + 23 + ... + 299 + 2100
S = ( 21 + 22 ) + ... + ( 299 + 2100 )
S = 21( 1 + 2 ) + ... + 299 ( 1 + 2 )
S = 21 . 3 + ... + 299 . 3
S = 3( 21 + ... + 299 ) chia hết cho 3
21 + 22 + ... + 2100
= 2 + (22 + 23 + 24) + ... + (298 + 299 + 2100)
= 2 + 22.(1 + 21 + 22) + ... + 298.(1 + 21 + 22
= 2 + 22.(1 + 2 + 4) + ... + 298.(1 + 2 + 4)
= 2 + 22.7 + 23.7 + ... + 298.7
= 2 + (22 + 23 + 24 + ... + 298).7
Vì (22 + 23 + 24 + ... + 298).7 chia hết cho 7, 2 chia 7 dư 2 => 2 + (22 + 23 + 24 + ... + 298).7 dư 2
Vậy 21 + 22 + ... + 2100 chia 7 dư 2
Cristiano Ronaldo ko thấy đề hỏi c/m đó hay sao mà còn hỏi
Bạn vô đây tham khảo nha Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath
1.
Đặt $A=2+2^2+2^3+...+2^{100}$
$2A=2^2+2^3+2^4+...+2^{101}$
$\Rightarrow 2A-A=2^{101}-2$
$\Rightarrow A=2^{101}-2$
Có:
$A+n=510$
$2^{101}-2+n=510$
$n=510+2-2^{101}=512-2^{101}$
2.
$A=7+(7^2+7^3)+(7^4+7^5)+....+(7^{20}+7^{21})$
$=7+7^2(1+7)+7^4(1+7)+...+7^{20}(1+7)$
$=7+(1+7)(7^2+7^4+....+7^{20})$
$=7+8(7^2+7^4+...+7^{20)$
$\Rightarrow A$ chia 8 dư 7.
Tổng = 2+(2^2+2^3+2^4)+(2^5+2^6+2^7)+....+(2^98+2^99+2^100)
= 2+2.(2+2^2+2^3)+2^4.(2+2^2+2^3)+....+2^97.(2+2^2+2^3)
= 2+2.14+2^4.14+....+2^97.14
= 2+14.(2+2^4+...+2^97)
Vì 14 chia hết cho 7 =. 14(2+2^4+...+2^97) chia hết cho 7
Mà 2 chia 7 dư 2
=> tổng trên chia 7 dư 2
k mk nha
Nhóm 3 số hạng liền nhau:
(21 + 22 + 23) + ... + (297 + 298 + 299) + 2100
= 2(1 + 2 + 22) + ... + 297 (1 + 2 + 22) + 2100
= 2.7 + ... + 297 . 7 + 2100
Vậy: Số dư của tổng trên chia cho 7 bằng số dư của 2100 chia 7.
Ta có: 23 = 8 chia hết cho 7 dư 1.
=> 299 = (23)33 chia cho 7 dư 1.
=> 2100 = 2.299 chia cho 7 dư 2.
Vậy: Tổng đã chia cho 7 dư 2.
S = 1 + 2 + 22 + 23 + ... + 2100
2S = 2 . ( 1 + 2 + 22 + 23 + ... + 2100)
2S = 2 + 22 + 23 + 24 + ... + 2101
2S - S = ( 2 + 22 + 23 + 24 + ... + 2101 ) - ( 1 + 2 + 22 + 23 + ... + 2100 )
1S = 2101 - 1
S = 2101 - 1
Vậy S = 2101 - 1
Học tốt!!!
\(M=\left(7+7^2\right)+\left(7^3+7^4\right)+.........+7^{100}\)
\(M=56.1+56.7^2+..........+7^{98}.56\)
\(M=56.\left(1+7^2+...........+7^{98}\right)=4.14.\left(1+7^2+.......+7^{98}\right)\)
Vậy M chia cho 4 dư 0 (chia hết cho 4)