K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 7 2018

Ta có : 

\(S=1+5+5^2+5^3+5^4+5^5+5^6+5^7+5^8+5^9\)

\(\Rightarrow S=1+\left(5+5^2+5^3\right)+\left(5^4+5^5+5^6\right)+\left(5^7+5^8+5^9\right)\)

\(\Rightarrow S=1+5\left(1+5+5^2\right)+5^4\left(1+5+5^2\right)+5^7\left(1+5+5^2\right)\)

\(\Rightarrow S=1+5.31+5^4.31+5^7.31\)

\(\Rightarrow S=1+31\left(5+5^4+5^7\right)\)

Vậy \(S:31\)dư \(1\)

8 tháng 7 2018

\(S=1+5+5^2+5^3+...+5^9\)

Đặt  \(A=5+5^2+5^3+...+5^9\)

            \(=\left(5+5^2+5^3\right)+...+\left(5^7+5^8+5^9\right)\)

             \(=\left(5.1+5.5+5.5^2\right)+...+\left(5^7.1+5^7.5+5^7.5^2\right)\)

               \(=5.\left(1+5+5^2\right)+...+5^7.\left(1+5+5^2\right)\)

                \(=5.31+...+5^7.31\)

                 \(=\left(5+5^7\right).31\)

Thay A vào S, ta có:

\(S=1+\left(5+5^7\right).31\)

Vì \(\left(5+5^7\right).31⋮31\)mà    \(S=1+\left(5+5^7\right).31\)

Suy ra  S  chia cho 31 dư 1.

hok tốt nha !

10 tháng 5 2019

\(A=1+(5+5^2+5^3)+(5^4+5^5+5^6)+(5^7+5^8+5^9)\)

\(\Leftrightarrow A=1+5.\left(1+5+5^2\right)+5^4.\left(1+5+5^2\right)+5^7.\left(1+5+5^2\right)\)

\(\Leftrightarrow A=1+5.31+5^4.31+5^7.31\)

\(\Leftrightarrow A=1+31.\left(5+5^4+5^7\right)\)

Vì \(31.\left(5+5^4+5^7\right)⋮31\)nên A chia cho 31 dư 1.

10 tháng 5 2019

 1 + 5 + 52 + 53 + 5+ 55+ 56+ 57+ 58+ 59 cho 31

=1+( 5 + 52 + 53)+(5+ 55+ 56)+(57+ 58+ 59)

=5.(1+5+52)+54(1+5+52)+57(1+5+52)+1

=1+5. 31+54. 31+57.+31

=31.(5+54+57)+1

Vì 31 chia hết cho 31

Nên 31.(5+54+57) chia hết cho 31 

Vì thế 31.(5+54+57) chia cho 31 +1

Vậy tổng này chia 31 dư1

12 tháng 2 2018

S=1+5^2+5^3+...+5^2010
S=1+(5^1+5^2)+...+(5^2009+5^2010)
S=1+5(1+5)+5^3(1+5)+...+5^2009(1+5)
S=1+5.6+5^3.6+...+5^2009.6
S=1+6(5+5^3+5^5+...+5^2009)
Ta có 6(5+5^3+...+5^2009) chia hết cho 2 nên S chia 2 dư 1
S=1+6(5+...+5^2009)=1+6.5(1+5^2+5^4+...+5^2008)
S=1+30(5^2+...+5^2008)
Ta có 30(1+5^2+...+5^2008) chia hết cho 10 nên S chia 10 dư 1

5 tháng 4 2018

THIẾU CHIA CHO 13 KÌA

16 tháng 10 2017

Đề phải là chứng minh nhé bạn:

\(1+5+5^2+...+5^{1995}\)

\(=\left(1+5+5^2\right)+...+\left(5^{1993}+5^{1994}+5^{1995}\right)\)

\(=\left(1+5+5^2\right)+...+5^{1993}.\left(1+5+5^2\right)\)

\(=31+...+5^{1993}.31\)

\(=31.\left(1+...+5^{1993}\right)⋮31\left(đpcm\right)\)

\(1+2+2^2+...+2^{101}\)

\(=\left(1+2+2^2+2^3\right)+...+\left(2^{98}+2^{99}+2^{100}+2^{101}\right)\)

\(=\left(1+2+2^2+2^3\right)+...+2^{98}.\left(1+2+2^2+2^3\right)\)

\(=15+...+2^{98}.15\)

\(=15.\left(1+...+2^{98}\right)⋮15\left(đpcm\right)\)

17 tháng 1 2017

k cho mk nhé

S=5+5^2+...+5^2013

Ta nhóm 2 số thành 1 nhóm

=> S=(5+5^2)+...+(5^2012+5^2013)

=>S=30+...+5^2011(5+25)

=>S=30+...+5^2011.30

Vì 30 chia hết 15=>S:15 dư 0

Tổng có 2008 số hạng. Ta có :

1 + 5 + 52 + ... + 52008

= 1 + 5 + ( 52 + 53 + 54 ) + ( 56 + 57 + 58 ) + ... + ( 52006 + 52007 + 52008 )

= 1 + 5 + 52( 1 + 5 + 52 ) + 55( 1 + 5 + 52 ) + ... + 52006( 1 + 5 + 52 )

= 6 + 52 . 31 + 55 . 31 + ... + 52006 . 31

= 6 + 31( 52 + 55 + ... + 52006 ) chia cho 31 dư 6

#ĐinhBa 

16 tháng 5 2019

Đặt \(A=1+5+5^2+5^3+...+5^{2008}\)

A có 2009 số chia làm 1004 cặp, còn dư số 1

\(\Rightarrow A=1+\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^{2007}+5^{2008}\right)\)

\(\Rightarrow A=1+5\left(1+5\right)+5^3\left(1+5\right)+...+5^{2007}\left(1+5\right)\)

\(\Rightarrow A=1+5.6+5^3.6+...+5^{2007}.6\)

\(\Rightarrow A=1+6\left(5+5^3+...+5^{2007}\right)\)

Vậy A chia 6 dư 1.