Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)xét 2A =2+2^2+2^3+.....+2^2019
-A=1+2+2^2+...+2^2018
A=(2^2019)-1 <2^2019
b)theo câu a ta có A+1=2^2019-1+1=2^2019=2^(x+1)
2019=x+1 =>x=2018
A = 3 + 32 + 33 + 34 + 35+ .... + 32018 + 32019
= 3 + (32 + 33 + 34 + 35+ .... + 32018 + 32019)
= 3 + [(32 + 33) + (34 + 35) + ... + (32018 + 32019)]
= 3 + [(32 + 33) + 32.(32 + 33) + ... + 32016.(32 + 33)]
= 3 + (36 + 32.36 + ... + 32016.36)
= 3 + 36.(1 + 32 + .... + 32016)
= 3 + 4.9.(1 + 32 + .... + 32016)
Vì 4.9.(1 + 32 + .... + 32016) \(⋮\)4
=> 4.9.(1 + 32 + .... + 32016) + 3 : 4 dư 3
=> A : 4 dư 3
Vậy số dư khi A chia 4 là 3
theo bài ra ta có:
A=3^1+3^2+3^3+3^4 .... +3^2018+3^2019
3A=3.(3^1+3^2+3^3+3^4 .... +3^2018+3^2019)
3A=3^2+3^3+3^4 .... +3^2018+3^2020
3A-A=(3^2+3^3+3^4 .... +3^2018+3^2020)
-(3^1+3^2+3^3+3^4 .... +3^2018+3^2019)
2A= 3^2020-3^1
=>2A=(...1)-(...3)
=>A=(...8)
...........
A=(1+2018)+2018^2(1+2018)+...+2018^2016(1+2018)
=2019(1+2018^2+...+2018^2016) chia hết cho 2019
=>A chia 2019 dư 0
\(x^{2020}=x\Leftrightarrow x^{2020}-x=0\Leftrightarrow x\left(x^{2019}-1\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x^{2019}-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x^{2019}=1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}\)
\(1+2+2^2+2^3+....+2^{2019}+2^{2020}\)
\(A=\left(1+2+2^2\right)+\left(2^3+2^4+2^5\right)+....+\left(2^{2016}+2^{2017}+2^{2018}\right)+2^{2019}+2^{2020}\)
\(A=\left(1+2+2^2\right)+2^3\left(1+2+2^2\right)+.....+2^{2016}\left(1+2+2^2\right)+2^{2019}+2^{2020}\)
\(A=7+2^3.7+2^6.7+2^9.7+....+2^{2016}.7+2^{2019}+2^{2020}\)
\(\text{Ta có:}2^{2019}+2^{2020}=8^{673}+8^{673}.2\equiv1+1.2\left(\text{mod 7}\right)\equiv3\left(\text{mod 7}\right)\Rightarrow A\text{ chia 7 dư 3}\)
1) Ta có : 5xy + 2x - 5y = 7
=> x(5y - 2) - 5y + 2 = 7 + 2
=> x(5y - 2) - (5y - 2) = 9
=> (5y - 2)(x - 1) = 9
Với \(x;y\inℕ\Rightarrow\hept{\begin{cases}5y-2\inℕ^∗\\x-1\inℕ^∗\end{cases}}\)
=> có 9 = 3.3 = 1.9
Lập bảng xét các trường hợp
x - 1 | 1 | 9 | 3 |
5y - 2 | 9 | 1 | 3 |
x | 2 | 10 | 4(tm) |
y | 2,2 | 0,6 | 1(tm) |
Vậy x = 4 ; y = 1
2) A = 75.(42018 + 42017 + .... + 42 + 4) + 25
Đặt B = 42018 + 42017 + .... + 42 + 4
Khi đó A = 75B + 25
<=> 4B = 42019 + 42018 + .... + 43 + 42
Lấy 4B trừ B cả 2 vế ta có :
4B - B = ( 42019 + 42018 + .... + 43 + 42) - (42018 + 42017 + .... + 42 + 4)
3B = 42019 - 4
=> B = \(\frac{4^{2019}-4}{3}\)
=> A = \(75\frac{4^{2019}-4}{3}+25=25.\left(4^{2019}-4\right)+25=25\left(4^{2019}-3\right)=25.4^{2019}-75\)
Vì \(25.4^{2019}⋮4^{2019}\Rightarrow25.4^{2019}-75:4^{2019}\text{ dư 75 }\Rightarrow A:4^{2019}\text{ dư 75}\)
Vậy số dư khi A chia cho 42019 là 75
Đặt S=1+2+2^2+..........+2^2019
Vì: S có 2020 số hạng nên ta chia S thành:673 nhóm mỗi nhóm có 3 số hạng và thừa 1 số hạng như sau
S=1+(2+2^2+2^3)+(2^4+2^5+2^6)+...........+(2^2017+2^2018+2^2019)
S=1+2(1+2+4)+2^4(1+2+4)+........+2^2017(1+2+4)
S=1+2.7+2^4.7+.....+2^2017.7
S=1+7(2+2^4+2^2017) chia 7 dư 1
Vậy: 1+2+2^2+2^3+..........+2^2019 chia 7 dư 1
a/ \(\frac{2n+7}{n+1}=\frac{2\left(n+1\right)+5}{n+1}=2+\frac{5}{n+1}.\)
\(2n+7⋮n+1\) khi \(5⋮n+1\) hay n+1 là USC của 5 => n+1={-5;-1;1;5} => n={-6;-2;0;4}
b/
\(2A=2+2^2+2^3+2^4+...2^{2019}\)
\(\Rightarrow A=2A-A=2^{2019}-1\)
=> A, B là 2 số tự nhiên liên tiếp