Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=2+2^2+2^3+...+2^{100}\)
\(A=2+\left(2^2+2^3+2^4\right)+...+\left(2^{98}+2^{99}+2^{100}\right)\)
\(A=2+2^2\left(1+2+2^2\right)+...+2^{98}\left(1+2+2^2\right)\)
\(A=2+2^2\cdot7+...+2^{98}\cdot7\)
\(A=2+7\cdot\left(2^2+...+2^{98}\right)\)
Dễ thấy \(7\cdot\left(2^2+...+2^{98}\right)⋮7\)
\(\Rightarrow\) A chia 7 dư 2
A=2+(22+23+24)+...+(298+299+2100)A=2+(22+23+24)+...+(298+299+2100)
A=2+22(1+2+22)+...+298(1+2+22)A=2+22(1+2+22)+...+298(1+2+22)
A=2+22⋅7+...+298⋅7A=2+22⋅7+...+298⋅7
A=2+7⋅(22+...+298)A=2+7⋅(22+...+298)
Ta thấy 7⋅(22+...+298)⋮77⋅(22+...+298)⋮7
⇒⇒ A chia 7 dư 2
tôi làm luôn nhé ko ghi đề bài
A=2+(2^2+2^3+2^4)+....+(2^99+2^100+2^101)
A=2+2^2.(1+2+2^2)+...+2^99.(1+2+2^2)
A=2+2^2.7+...+2^99.7
A=2+(2^2+...+2^99).7 ko chia hết cho 7
Vậy A :7 thì dư 2
S=1+7+7^2+7^3+...+7^100+7^101
=(1+7)+7^2(1+7)+...+7^100(1+7)
=8+7^2.8+...+7^100.8
=8.(1+7^2+...+7^100) chia hết cho 8
Vậy S chia hết cho 8
a.S=4+4^2+4^3+4^4+...+4^99+4^100 chia hết cho 5
S=(4+4^2)+(4^3+4^4)+...+(4^99+4^100)
S=20+4^2*20+...+4^98
S=20*(1+4^2+...+4^98) chia hết cho 5(đpcm)
b.S=2+2^2+2^3+2^4+...+2^2009+2^2010CHIA HẾT CHO 6
S=(2+2^2)+(2^3+2^4)+...+(2^2009+2^2010)
S=6+2^2.*6+...+2^2008
S=6*(1+2^2+...+2^2008)CHIA HẾT CHO 6
\(A=1+2^2+2^3+...+2^{99}+2^{100}\)
\(\Rightarrow2A=2+2^2+2^3+2^4+...+2^{100}+2^{101}\)
\(\Rightarrow2A-A=\left(2+2^2+2^3+...+2^{101}\right)-\left(1+2+2^2+...+2^{100}\right)\)
\(\Rightarrow A=2^{101}-1\)
\(\Rightarrow A+1=2^{101}-1+1\)
\(\Rightarrow a+1=2^{101}\)
\(\Rightarrow2n+1=101\)
\(\Rightarrow2n=101-1\)
\(\Rightarrow2n=100\)
\(\Rightarrow n=100\div2\)
\(\Rightarrow n=50\)
ta nhận thấy 2^1+2^2+2^3+2^4 chia hết cho 7.Vậy cứ 4 số liên tiếp cũng chia hết cho 7.
=>Số số hạng của mũ là:
100-1:1=100
mà 100 chia hết cho 4
=>[2^1+2^2+...2^98+2^99+2^100]:7 có số dư là 0