Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Số số hạng của C là : (2003 - 1) : 1 + 1 = 2003
Nếu nhóm 3 số hạng vào 1 nhóm thì số nhóm là : 2003 : 3 = 667 (nhóm) dư 2 số hạng
Ta có :
\(C=\left(2+2^2\right)+\left(2^3+2^4+2^5\right)+...+\left(2^{2001}+2^{2002}+2^{2003}\right)\)
\(C=6+\left[2^3.\left(1+2+2^2\right)+...+2^{2001}.\left(1+2+2^2\right)\right]\)
\(C=6+\left[2^3.7+...+2^{2001}.7\right]\)
\(C=6+7.\left(2^3+...+2^{2001}\right)\)
\(\Rightarrow C:7\)dư 6
A = 1 + 2 + ( 22 + 23 + 24 ) + .... + ( 22000 + 22001 + 22002 )
= 3 + 22 ( 1 + 2 + 4 ) + .... + 22000( 1 + 2 + 4 )
= 3 + ( 22 + .... + 22000) 7 chia 7 dư 3
Vậy A chia 7 dư 3
Số số hạng của A là (2002-0):1+1=2001(số)
Nhóm 3 số hạng vào 1 nhóm thì có số nhóm là: 2001:3=667(nhóm)
Ta có
\(A=\left(1+2+2^2\right)+...+2^{2000}\left(1+2+2^2\right)\)
\(=7\left(1+...+2^{2000}\right)⋮7\)
A = 1 + 2 + ( 22 + 23 + 24 ) + .... + ( 22000 + 22001 + 22002 )
= 3 + 22 ( 1 + 2 + 4 ) + .... + 22000( 1 + 2 + 4 )
= 3 + ( 22 + .... + 22000) 7 chia 7 dư 3
Vậy A chia 7 dư 3
x + 2999 chia hết cho 997 khi x + 2999 là B(997) là ( 0; 997 ; 1994 '; 2991; 3988 ; .... )
Để x +2999 là số tự nhiên có ba chữ số khi 2999 < x + 2999 < 3999
=> x + 2999 = 3988 => x = 989
Gọi số có 6 chữ số giống nhau là aaaaaa
Ta có: aaaaaa = 111111 . a = 37037 . 3 . a chia hết cho 37037
Chứng tỏ 1 số có 6 chữ số giống nhau chia hết cho 37037
A = 1 + 2 + 22 + 23 + ... + 22001 + 22002 ( có 2003 số, 2003 : 3 dư 2)
A = 1 + 2 + (22 + 23 + 24) + (25 + 26 + 27) + ... + (22000 + 22001 + 22002)
A = 3 + 22.(1 + 2 + 22) + 25.(1 + 2 + 22) + ... + 22000.(1 + 2 + 22)
A = 3 + 22.7 + 25.7 + ... + 22000.7
A = 3 + 7.(22 + 25 + 22000)
Vì 7.(22 + 25 + ... + 22000) chia hết cho 7, 3 chia 7 dư 3
=> A chia 7 dư 3
A=1+2+(22+23+24)+...+(22000+22001+22002)
=3+22(1+2+4)+...+22000(1+2+4)
=3+(22+..+22000)7 chia 7 dư 3
vậy A chia 7 dư 3
\(A=1+2+2^2+....+2^{2002}\)
\(\Rightarrow A=2A-A=1-2^{2003}\)
\(\Rightarrow A:7=1-2^{2003}:7\)dư 7
ai trả lời đi chứ:((
huhu