Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c. S3 = 165 + 215 chia hết cho 33
ta thấy: 16^5=2^20
=> A=16^5 + 2^15 = 2^20 + 2^15
= 2^15.2^5 + 2^15
= 2^15(2^5+1)
=2^15.33
số này luôn chia hết cho 33
b. S2 = 2 + 22 + 23 + 24 +........... + 2100 chia hết cho 31
= 2(1 + 2 + 22 + 23 + 24 ) + 26( 1 + 2 + 22 + 23 + 24 ) + ....+ (1 + 2 + 22 + 23 + 24 )296
= 2 x 31 + 26 x 31 + ..... + 296 x 31 = 31 x ( 2 + 26 + ..... + 296 )
=> 2 + 22 + 23 + 24 +........... + 2100 chia hết cho 31
a) S = 5 + 52 + 53 + ... + 5100
=> S = ( 5 + 52 ) + ( 53 + 54 ) + ... + ( 599 + 5100 )
=> S = 5( 1 + 5 ) + 53( 1 + 5 ) + ... + 599( 1 + 5 )
=> S = 5 . 6 + 53 . 6 + ... + 599 . 6
=> S = ( 5 + 53 + ... + 599 ) . 6 chia hết cho 6
=> S chia hết cho 6
b) S1 = 2 + 22 + 23 + ... + 2100
=> S1 = ( 2 + 22 + 23 + 24 + 25 ) + ... + ( 296 + 297 + 298 + 299 + 2100 )
=> S1 = 2( 1 + 2 + 22 + 23 + 24 ) + ... +296( 1 + 2 + 22 + 23 + 24 )
=> S1 = 2 . 31 + ... + 296 . 31
=> S1 = ( 2 + ... + 296 ) . 31 chia hết cho 31
=> S1 chia hết cho 31
c) S2 = 165 + 215
=> S2 = ( 24 )5 + 215
=> S2 = 220 + 215
=> S2 = 220( 1 + 25 )
=> S2 = 220 . 33 chia hết cho 33
=> S2 chia hết cho 33
\(A=\left(1+5+5^2\right)+\left(5^3+5^4+5^5\right)+.....+\left(5^{30}+5^{31}+5^{32}\right)\)
\(A=31.1+31.5^3+......+31.5^{30}\)
\(A=31.\left(1+5^3+......+5^{30}\right)\)\
Vậy A chia hết cho 31 hay chia 31 dư 0
A = 50 + 51 + 52 + 53 +...+5100 ( cs 101 so)
A = 50 +51 +( 52 + 53 + 54 )+( 55+56+57)+...+( 598 + 599 + 5100 )
A = 6+ 52.31 +55.31+...+598.31 chia 31 du 6
:)