K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
DT
0
Các câu hỏi dưới đây có thể giống với câu hỏi trên
NT
0
MT
4
S
15 tháng 1 2019
Đặt S=1+2+2^2+..........+2^2019
Vì: S có 2020 số hạng nên ta chia S thành:673 nhóm mỗi nhóm có 3 số hạng và thừa 1 số hạng như sau
S=1+(2+2^2+2^3)+(2^4+2^5+2^6)+...........+(2^2017+2^2018+2^2019)
S=1+2(1+2+4)+2^4(1+2+4)+........+2^2017(1+2+4)
S=1+2.7+2^4.7+.....+2^2017.7
S=1+7(2+2^4+2^2017) chia 7 dư 1
Vậy: 1+2+2^2+2^3+..........+2^2019 chia 7 dư 1
P
0
P
0
PA
0
NH
0