Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=(1+2018)+2018^2(1+2018)+...+2018^2016(1+2018)
=2019(1+2018^2+...+2018^2016) chia hết cho 2019
=>A chia 2019 dư 0
a) Ta có: \(2019\equiv3\left(mod9\right)\)
=> \(A=2019^{2018}\equiv3^{2018}\equiv3^{2.1009}\equiv9^{1009}\equiv0\left(mod9\right)\)
=> A chia 9 dư 0
b) Ta có: \(2020\equiv10\left(mod15\right)\)
=> \(B=2020^{2019}\equiv10^{2019}\equiv10\left(mod15\right)\)
=> B chia 15 dư 10.
2016 mũ 2017 có chữ số tận cùng là 6+2017 mũ 2018 có chữ số tận cùng là 3+2018 mũ 2019 có chữ số tận cùng là 2+chữ số tận cùng của 2019 mũ 2020 có chữ số tận cùng là 1=12
suy ra: chữ số tận cùng của 2016 mũ 2017+2017 mũ 2018+2018 mũ 2019+2019 mũ 2020 là 2
Đặt A = 111+112+113+...+112018+112019
A = (111+112+113)+...+(112017+112018+112019)
A = 11(1 + 11 + 112) + 114(1+11+112) + ... + 112017(1+11+112)
A = 11 . 133 + 114 . 133 + ... + 112017 . 133
A = 133(11 + 114 + ... + 112017) chia cho 12 dư 1 (vì 133 chia cho 12 dư 1)
=> 111+112+113+...+112018+112019 chia cho 12 dư 1
\(S=1+2-3-4+5+6-7-8+9-10-...+2018-2019-2020-2021\)
\(S=1+\left(2-3\right)-4+5+\left(6-7\right)-8+9-10-...+\left(2018-2019\right)-2020-2021\)
\(S=1-1+1-1+...-1-2020-2021=-1-2020-2021=-4042\)
b) Tích của số chia và thương là :
\(89-12=77\)=7.11
⇒ Số chia là 11; thương là 7
1/6+3x+2=87
3x+2=87-6
3x+2=81
3x+2=34
x+2=4
x =4-2
x =2
2/
(33-3)chia hết cho x =>30 chia hết cho x
(101-11)chia hết cho x 90 chia hết cho x
x thuộc ƯC(30,90)
30=2.3.5
90=2.3.3.5
ƯCLN(30,90)=2.3.5=30
x thuộc ƯC(30,90)=Ư(30)=1 ,2,3,5,6,10,15,30
Sau khi loại các số không hợp điều kiện ta được các số:15,30
Vậy x = 15,30
3/A=2017+20172+20173+.........+20172018
A=(2017+20172)+(20173+20174)+.......(20172017+20172018)
A=2017.(1+2017)+20173.(1+2017)+..........20172017.(1+2017)
A=2017.2018+20173.2018+..................20172017.2018
=>A chia hết cho 2018