K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
30 tháng 6 2024

Lời giải:

$f(x)=(x^{2009}+x^{2007}+x^{2005}+...+x^3)+(x^{2008}+x^{2006}+....+x^2)+(x+1)$

$=[x^{2007}(x^2+1)+x^{2003}(x^2+1)+...+x^3(x^2+1)]+[x^{2006}(x^2+1)+x^{2002}(x^2+1)+...+x^2(x^2+1)]+(x+1)$

$=(x^2+1)(x^{2007}+x^{2003}+...+x^3)]+(x^2+1)(x^{2006}+...+x^2)+(x+1)$

$=(x^2+1)(x^{2007}+x^{2003}+...+x^3+x^{2006}+...+x^2)+(x+1)$

$\Rightarrow f(x)$ chia $x^2+1$ dư $(x+1)$

27 tháng 6 2016

oe

20 tháng 4 2016

vì đây là phép chi cho đa thức bậc 2 nên dư sẽ là đa thức bậc 1

ta gọi dư phép chia trên là ax+b

gọi thương phép chia là P(x)

đặt (x+2)(x+4)(x+6)(x+8)+2008 = f(x)

ta có

 f(x) = (x+2)(x+4)(x+6)(x+8)+2008 = (x2+10x+21) . P(x) + ax+b

 f(x) = (x+2)(x+4)(x+6)(x+8)+2008 = (x+3)(x+7) . P(x) +ax+b

=> f(-3) = (-3+2)(-3+4)(-3+6)(-3+8)+2008 = (-3+3)(-3+7).P(x) -3a + b

           =  1993 = -3a+b (1)

=>f(-7) = (-7+2)(-7+4)(-7+6)(-7+8)+2008 = (-7+3)(-7+7) - 7a + b

          =1993 = -7a + b (2)

trừ (1) cho (2) ta được

4a=0 => a=0

thay vào (1) ta được

1993 = -3a+b = -3 . 0 +b

=> b=1993

ta được dư là ax+b = 0x + 1993 = 1993

24 tháng 2 2015

Ta có (x+2)(x+4)(x+6)(x+8) + 2008 = (x2 +10x+16)(x2 +10x +24) +2008

= [(x2 +10x +21) -5][(x2 +10x + 21) +3] +2008 = (x2 +10x +21)2 +3(x2 +10x +21) - 5(x2 +10x +21) - 15 +2008

= (x2 +10x +21)2 -2(x2 +10x +21) + 1993

Vậy dư của phép chia là 1993

26 tháng 1 2016

La 2 day! Chac chan 100% luon!!!!! Tick minh nhe Ngọc !!!!!!!!!!!!!!!!!!!

bạn ấn vào đúng 0 sẽ ra kết quả, mình giải được rồi dễ lắm