Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$f(x)=(x^{2009}+x^{2007}+x^{2005}+...+x^3)+(x^{2008}+x^{2006}+....+x^2)+(x+1)$
$=[x^{2007}(x^2+1)+x^{2003}(x^2+1)+...+x^3(x^2+1)]+[x^{2006}(x^2+1)+x^{2002}(x^2+1)+...+x^2(x^2+1)]+(x+1)$
$=(x^2+1)(x^{2007}+x^{2003}+...+x^3)]+(x^2+1)(x^{2006}+...+x^2)+(x+1)$
$=(x^2+1)(x^{2007}+x^{2003}+...+x^3+x^{2006}+...+x^2)+(x+1)$
$\Rightarrow f(x)$ chia $x^2+1$ dư $(x+1)$
vì đây là phép chi cho đa thức bậc 2 nên dư sẽ là đa thức bậc 1
ta gọi dư phép chia trên là ax+b
gọi thương phép chia là P(x)
đặt (x+2)(x+4)(x+6)(x+8)+2008 = f(x)
ta có
f(x) = (x+2)(x+4)(x+6)(x+8)+2008 = (x2+10x+21) . P(x) + ax+b
f(x) = (x+2)(x+4)(x+6)(x+8)+2008 = (x+3)(x+7) . P(x) +ax+b
=> f(-3) = (-3+2)(-3+4)(-3+6)(-3+8)+2008 = (-3+3)(-3+7).P(x) -3a + b
= 1993 = -3a+b (1)
=>f(-7) = (-7+2)(-7+4)(-7+6)(-7+8)+2008 = (-7+3)(-7+7) - 7a + b
=1993 = -7a + b (2)
trừ (1) cho (2) ta được
4a=0 => a=0
thay vào (1) ta được
1993 = -3a+b = -3 . 0 +b
=> b=1993
ta được dư là ax+b = 0x + 1993 = 1993
La 2 day! Chac chan 100% luon!!!!! Tick minh nhe Ngọc !!!!!!!!!!!!!!!!!!!
bạn ấn vào đúng 0 sẽ ra kết quả, mình giải được rồi dễ lắm