K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 11 2016

Ta có 26 đồng dư với 1 (mod 9 )

=> ( 26 )16 đồng dư với 1 ( mod 9 )

=> 296 đồng dư với 1 ( mod 9 )

=> 296.24 đồng dư với 1.24 ( mod 9 )

=> 2100 đồng dư với 16 ( mod 9 )

Mà 16 đồng dư với 7 ( mod 9 )

=> 2100 đồng dư với 7 ( mod 9 )

Vậy 2100 chia 7 dư9

mk ko chắc lắm

26 tháng 11 2016

bổ sung : mà 9 > 7 => 2100 chia 7 dư 2

8 tháng 1 2016

(2 mũ 0+2 mũ 1 + 2 mũ 2 + 2 mũ 3)+...+(2 mũ 97+2 mũ 98+2 mũ 99+2 mũ 100)

=(  1     +   2      +     4      +     8    )+...+(2 mũ 97x1+2 mũ 97x2 +2 mũ 97x4+2 mũ 97x8)

=                 15                              +...+ 2 mũ 97x(1+2+4+8)

=                  15                             +...+2 mũ 97x15 

chia hêt cho 15 dư 0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Sai roi du 1 do ban

11 tháng 3 2020

cho \(M=1+3+3^2+...+3^{99}+3^{100}\)

=>\(M=1+\left(3+3^2+3^3\right)+...+\left(3^{98}+3^{99}+3^{100}\right)\)

\(=>M=1+3\left(1+3+3^2\right)+...+3^{98}\left(1+3+3^2\right)\)

\(=>M=1+13\left(3+...+3^{98}\right)\)

Mà \(13\left(3+3^{98}\right)⋮13\)

=> M chia cho 13 dư 1

11 tháng 3 2020

+) \(M=1+3+3^2+...+3^{99}+3^{100}\)

\(\Leftrightarrow M=\left(1+3+3^2\right)+\left(3^3+3^4+3^5\right)+...+\left(3^{98}+3^{99}+3^{100}\right)\)

\(\Leftrightarrow M=\left(1+3+9\right)+3^3\left(1+3+9\right)+....+3^{98}\left(1+3+9\right)\)

\(\Leftrightarrow M=13+3^3\cdot14+....+3^{98}\cdot14\)

\(\Leftrightarrow M=13\left(1+3^3+....+3^{98}\right)\)

=> M chia 13 dư 0

14 tháng 10 2017

mk có bt j đâu mak giải

14 tháng 10 2017

mình nghĩ là 4 hoac 9

2 tháng 1 2019

mk chỉ làm đc câu a) bài 1 thôi nha !

Bài 1 .

Ta có :

 a) A = (2+22)+(23+24)+...+299+2100

=> A = (1+2).21+(1+2).23+...+(1+2).299

=> A = 3.(21+23+...+299\(⋮\)3

=> A \(⋮\)3

2 tháng 5 2020

\(S=2^0+2^1+2^2+...+2^{99}+2^{100}\)

\(=1+2+\left(2^2+2^3+2^4\right)+...+\left(2^{98}+2^{99}+2^{100}\right)\)

\(=3+2^2.\left(1+2+4\right)+...+2^{98}.\left(1+2+4\right)\)

\(=3+7.\left(2^2+2^5+...+2^{98}\right)\)chia 7 dư 3

3 tháng 5 2020

\(S=2^0+2^1+2^2+...+2^{99}+2^{100}\)

\(S=\left(2^0+2^1+2^2\right)+\left(2^3+2^4+2^5\right)+....+\left(2^{98}+2^{99}+2^{100}\right)\)

\(S=\left(1+2+4\right)+2^3\left(1+2+4\right)+.....+2^{98}\left(1+2+4\right)\)

\(S=7+2^3\cdot7+....+2^{98}\cdot7\)

\(S=7\left(1+2^3+...+2^{98}\right)\)

=> S chia 7 dư 0 hay S chia hết cho 7